Chinese Journal of Lasers, Volume. 48, Issue 8, 0802023(2021)

Heterogeneous Connection of Carbon Nanotubes with Metal Electrodes and Its Electrical Properties

Huanhuan Mei1,2,3, Jianlei Cui1,2、*, Yang Cheng1,2, Xiaoqiao He3, and Xuesong Mei1,2
Author Affiliations
  • 1State Key Laboratory for Manufacturing System Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi 710054, China
  • 2Shaanxi Key Laboratory of Intelligent Robots, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, China
  • 3Department of Architecture and Civil Engineering, City University of Hongkong, Hongkong, 999077, China
  • show less
    References(119)

    [2] Qiu C G, Zhang Z Y, Xiao M M et al. Scaling carbon nanotube complementary transistors to 5-nm gate lengths[J]. Science, 355, 271-276(2017).

    [4] Yang Y J, Ding L, Han J et al. High-performance complementary transistors and medium-scale integrated circuits based on carbon nanotube thin films[J]. ACS Nano, 11, 4124-4132(2017).

    [8] Alam A, Majumder M K, Kumari A et al. Performance analysis of single- and multi-walled carbon nanotube based through silicon vias[C]. //2015 IEEE 65th Electronic Components and Technology Conference (ECTC), May 26-29, 2015, San Diego, CA, USA., 1834-1839(2015).

    [13] Geier M L, McMorrow J J, Xu W C et al. Solution-processed carbon nanotube thin-film complementary static random access memory[J]. Nature Nanotechnology, 10, 944-948(2015).

    [14] Qu M N. Preparation and properties of carbon nanotube network structure field effect transistors[D]. Shanghai: Fudan University(2011).

    [15] Liu T T, Zhao J W, Xu W W et al. Flexible integrated diode-transistor logic (DTL) driving circuits based on printed carbon nanotube thin film transistors with low operation voltage[J]. Nanoscale, 10, 614-622(2018).

    [16] Cao Q, Kim H S, Pimparkar N et al. Medium-scale carbon nanotube thin-film integrated circuits on flexible plastic substrates[J]. Nature, 454, 495-500(2008).

    [19] Avouris P, Chen Z H, Perebeinos V et al. Carbon-based electronics[J]. Nature Nanotechnology, 2, 605-615(2007).

    [30] Maki H, Suzuki M, Ishibashi K et al. Local change of carbon nanotube-metal contacts by current flow through electrodes[J]. Japanese Journal of Applied Physics, 43, 2027-2030(2004).

    [46] Cui J L, Yang L J, Wang Y et al. Nanowelding configuration between carbon nanotubes in axial direction[J]. Applied Surface Science, 264, 713-717(2013).

    [54] Andrews J B, Mondal K, Neumann T V et al. Patterned liquid metal contacts for printed carbon nanotube transistors[J]. ACS Nano, 12, 5482-5488(2018).

    [57] Leroy W P, Detavernier C, van Meirhaeghe R L et al. Thin film solid-state reactions forming carbides as contact materials for carbon-containing semiconductors[J]. Journal of Applied Physics, 101, 053714(2007).

    [63] Dong L F, Youkey S, Bush J et al. Effects of local Joule heating on the reduction of contact resistance between carbon nanotubes and metal electrodes[J]. Journal of Applied Physics, 101, 024320(2007).

    [75] Yu N, Shi Q, Nakajima M et al. 3D assembly of carbon nanotubes for fabrication of field-effect transistors through nanomanipulation and electron-beam-induced deposition[J]. Journal of Micromechanics and Microengineering, 27, 105007(2017).

    [76] Liu P, Nakajima M, Yang Z et al. Evaluation of van der Waals forces between the carbon nanotube tip and gold surface under an electron microscope[J]. Proceedings of the Institution of Mechanical Engineers, Part N: Journal of Nanoengineering and Nanosystems, 222, 33-38(2008).

    [78] Yu M F, Lourie O, Dyer M J et al. Strength and breaking mechanism of multiwalled carbon nanotubes under tensile load[J]. Science, 287, 637-640(2000).

    [81] Liu X, Zhao L J, Zhou H et al. Microscopic study on the mechanism of ultrasonic nanowelding[J]. Advanced Materials Research, 97/98/99/100/101, 3928-3931(2010).

    [82] Chen C X, Yan L J, Kong E S W et al. Ultrasonic nanowelding of carbon nanotubes to metal electrodes[J]. Nanotechnology, 17, 2192-2197(2006).

    [83] Zhao B, Qi H X, Liu X et al. Measurement of adhesive force between single-walled carbon nanotube and Ti[J]. Fullerenes, Nanotubes and Carbon Nanostructures, 20, 750-754(2012).

    [85] Liu X, Wang Y R, Zhao Y et al. Research on interface structure during nanowelding with molecular dynamics and experimental method[J]. Journal of Nanoscience and Nanotechnology, 16, 7551-7556(2016).

    [88] Li B, Feng Y, Ding K W et al. Effect of electron beam irradiation on multi-walled carbon nanotubes[J]. Transactions of Nonferrous Metals Society of China, 24, 764-769(2014).

    [89] Krasheninnikov A V, Nordlund K, Keinonen J et al. Production of defects in supported carbon nanotubes under ion irradiation[J]. Physical Review B, 65, 165423(2002).

    [90] Bachtold A, Henny M, Terrier C et al. Contacting carbon nanotubes selectively with low-ohmic contacts for four-probe electric measurements[J]. Applied Physics Letters, 73, 274-276(1998).

    [94] Tang D M, Yin L C, Li F et al. Carbon nanotube-clamped metal atomic chain[J]. PNAS, 107, 9055-9059(2010).

    [96] Silveira J V, Savu R, Swart J W et al. Local laser annealing of contacts between MWCNTs and metallic electrodes[J]. Journal of Integrated Circuits and Systems, 9, 103-109(2014).

    [97] Liu X, Kong L, Wang Y R et al. Laser-induced SWCNTs-Al thin film and field emission property[J]. High Power Laser and Particle Beams, 27, 233-237(2015).

    [98] Kong L. Experimental study on laser nano welding technology[D]. Shanghai: Shanghai Ocean University(2016).

    [99] Li B K. Experimental study on metals (Cu, Sn and Al) and carbon nanotubes composites[D]. Shanghai: Shanghai Ocean University(2018).

    [100] Mei H H. Study on the interconnected mechanism and electrical properties of multi-walled carbon nanotubes induced by femtosecond laser[D]. Xi'an: Changan University(2019).

    [101] Mei H H, Cheng Y, Wang H J et al. Femtosecond laser-induced interconnection of multi-walled carbon nanotubes[J]. Ferroelectrics, 548, 50-59(2019).

    [102] Cui J L, Cheng Y, Zhang J W et al. Femtosecond laser irradiation of carbon nanotubes to metal electrodes[J]. Applied Sciences, 9, 476(2019).

    [105] Qian M, Goh C S, Sun Y H et al. Effects of CNTs on microstructure and hardness of laser welds of the CNT-reinforced magnesium composite[J]. Composites Part A: Applied Science and Manufacturing, 48, 67-72(2013).

    [110] Li S W, Zhou C J, Raju S et al. Catalyst design for high-density and low-temperature CNT synthesis on conductive Ti silicide substrate[J]. Diamond and Related Materials, 75, 39-43(2017).

    [112] Vollebregt S, Tichelaar F D, Schellevis H et al. Carbon nanotube vertical interconnects fabricated at temperatures as low as 350 ℃[J]. Carbon, 71, 249-256(2014).

    [113] Li S W, Liu Y H, Zhou S L et al. Contact resistance reduction of carbon nanotube via through O2 plasma post-synthesis treatment[J]. Journal of Materials Chemistry C, 6, 5039-5045(2018).

    [120] Ebbesen T W, Lezec H J, Hiura H et al. Electrical conductivity of individual carbon nanotubes[J]. Nature, 382, 54-56(1996).

    Tools

    Get Citation

    Copy Citation Text

    Huanhuan Mei, Jianlei Cui, Yang Cheng, Xiaoqiao He, Xuesong Mei. Heterogeneous Connection of Carbon Nanotubes with Metal Electrodes and Its Electrical Properties[J]. Chinese Journal of Lasers, 2021, 48(8): 0802023

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: laser manufacturing

    Received: Nov. 24, 2020

    Accepted: Dec. 28, 2020

    Published Online: Apr. 1, 2021

    The Author Email: Cui Jianlei (cjlxjtu@mail.xjtu.edu.cn)

    DOI:10.3788/CJL202148.0802023

    Topics