Laser & Optoelectronics Progress, Volume. 62, Issue 10, 1012003(2025)

Multi-Feature Vision Measurement Method for Aerospace Bolt Based on Contour Decomposition

Shuang Yan1, Guofeng Wang1、*, Jiefeng Li1, Wei Tang2, Zhizhuo Wang1, and Yanliang Sheng1
Author Affiliations
  • 1School of Mechanical Engineering, Tianjin University, Tianjin 300354, China
  • 2Aerospace Precision Products Inc., Ltd., Tianjin 300300, China
  • show less
    Figures & Tables(16)
    Framework of the bolt measurement algorithm
    Principle of preliminary decomposition of contours. (a) Creating a contour binary tree; (b) process of contour stitching
    Results of bolt contour decomposition. (a) Preprocessed contour; (b) preliminary decomposition of the contour
    Effect of Pratt fitting error on contour decomposition. (a) Chamfered connection; (b) fillet connection
    Optimization algorithm of contour decomposition
    Results of bolt multi-feature recognition. (a) Optimization of contour decomposition; (b) multi-feature recognition of bolt
    Bolt three-level feature tree
    Vision measurement system for aerospace bolts
    Comparison of bolt feature recognition algorithms
    Measuring result distribution of bolt feature dimensions
    • Table 1. Data structure of basic type contour

      View table

      Table 1. Data structure of basic type contour

      struct BasicTypeContour

      {std::vector<cv::Point>bcontour;

      _GEOMETRY_TYPE contourType;

      double bpara[4];

      struct BasicGeoType * lcontour, * rcontour;

    • Table 2. Data structure of bolt feature region

      View table

      Table 2. Data structure of bolt feature region

      struct FeaRegionType

      {std::vector<BGT>fcontours;

      _MP_FEATURE_TYPE featureType;

      std::vector<fea_Data>cal_data;

      struct FeaRegionType * lfeature, * rfeature;

    • Table 3. Parameters of the hardware unit of the vision measurement system

      View table

      Table 3. Parameters of the hardware unit of the vision measurement system

      Industrial cameraLensLight source
      ParameterSpecifilityParameterSpecifilityParameterSpecifility
      ModelMV-CE200ModelMT027-110-CModelMT-L80-W
      Sensor typeCMOSMagnification0.27TypeParallel light
      Resolution5472 pixel×3648 pixelFocal length110 mmBeam diameter80 mm
      Pixel size2.4 μm×2.4 μmMount typeC-mountColorWhite
    • Table 4. Aerospace bolts to be measured in experiments

      View table

      Table 4. Aerospace bolts to be measured in experiments

      Bolt typeType ⅠType ⅡType ⅢType Ⅳ
      Aerospace bolt
      Bolt length /mm15.1025.5042.1049.80
    • Table 5. Comparison of feature recognition algorithms

      View table

      Table 5. Comparison of feature recognition algorithms

      AlgorithmAdditional toolsRecall /%Time /sAccuracy of corner data /%Recognize flaw
      Template matchingYes812.10No
      Method in reference [9Yes891.60No
      Traditional contour recognition methodNo721.134No
      OursNo980.8598Yes
    • Table 6. Measuring error of bolt feature dimensions

      View table

      Table 6. Measuring error of bolt feature dimensions

      Error typeCountersunk headFilletShank ⅠShank Ⅱ
      H /mmα /(′)P-value /mmR /mmd1 /mmL1 /mmd /mmL /mm
      Mean absolute error0.008100.0050.0070.0080.0050.0090.010
      Max absolute error0.016130.0140.0130.0100.0130.0100.015
      Repeatability error0.00450.0050.0050.0050.0040.0050.004
    Tools

    Get Citation

    Copy Citation Text

    Shuang Yan, Guofeng Wang, Jiefeng Li, Wei Tang, Zhizhuo Wang, Yanliang Sheng. Multi-Feature Vision Measurement Method for Aerospace Bolt Based on Contour Decomposition[J]. Laser & Optoelectronics Progress, 2025, 62(10): 1012003

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Instrumentation, Measurement and Metrology

    Received: Oct. 8, 2024

    Accepted: Dec. 2, 2024

    Published Online: May. 22, 2025

    The Author Email: Guofeng Wang (gfwangmail@tju.edu.cn)

    DOI:10.3788/LOP242077

    CSTR:32186.14.LOP242077

    Topics