Chinese Optics, Volume. 16, Issue 2, 258(2023)

Research progress on high-resolution imaging system for optical remote sensing in aerospace

Yun SU1,2,3,4,5, Jing-jing GE3,4,5、*, Ye-chao WANG3,4,5, Le-ran WANG3,4,5, Yu WANG3,4,5, Zi-xi ZHENG3,4,5, and Xiao-peng SHAO1,2、*
Author Affiliations
  • 1School of Optoelectronic Engineering, Xidian University, Xi 'an 710071, China
  • 2Xi 'an Key Laboratory of Computational Imaging, Xi 'an 710071, China
  • 3Beijing Institute of Space Mechanics & Electricity, Beijing 100094, China
  • 4Beijing Key Laboratory of Advanced Optical Remote Sensing Technology, Beijing 100094, China
  • 5Core Professional Laboratory of Spatial Laser Information Perception Technology, Beijing 100094, China
  • show less
    References(136)

    [1] HE G J, LI K L, HU D Y, . Information fusion of multisensor satellite remote sensing data: theory, methodology and experiment[J]. Journal of Image and Graphics, 4, 744-750(1999).

    [2] HUANG J P, YU H P, GUAN X D, et al. Accelerated dryland expansion under climate change[J]. Nature Climate Change, 6, 166-171(2016).

    [3] FAN Y D, WEN Q, CHEN SH R. Engineering survey of the environment and disaster monitoring and forecasting small satellite constellation[J]. International Journal of Digital Earth, 5, 217-227(2012).

    [4] ZHANG P, HU X P, LU Q F, et al. FY-3E: the first operational meteorological satellite mission in an early morning orbit[J]. Advances in Atmospheric Sciences, 39, 1-8(2022).

    [5] MARTIN S. An Introduction to Ocean Remote Sensing[J]. Oceanography, 18, 86-89(2005).

    [6] PEI ZH Y, HOU J, WANG Q. Applications of optical technology in lunar and deep space exploration in China (Invited)[J]. Infrared and Laser Engineering, 49, 20201002(2020).

    [7] QU H S, JIN G, ZHANG Y. NextView program and progress in optical remote sensing satellites[J]. Chinese Journal of Optics and Applied Optics, 2, 467-476(2009).

    [8] [8] BRTBERG T, WARNER T. Highspatialresolution remote sensing[M]SHAO G F, REYNOLDS K M. Computer Applications in Sustainable Fest Management. herls: Springer, 2006: 1941.

    [9] BENEDIKTSSON J A, CHANUSSOT J, MOON W M. Very high-resolution remote sensing: challenges and opportunities [Point of View][J]. Proceedings of the IEEE, 100, 1907-1910(2012).

    [10] AKUMU C E, AMADI E O, DENNIS S. Application of drone and WorldView-4 satellite data in mapping and monitoring grazing land cover and pasture quality: pre- and post-flooding[J]. Land, 10, 321(2021).

    [11] TU T M, HUANG P S, HUNG C L, et al. A fast intensity–hue–saturation fusion technique with spectral adjustment for IKONOS imagery[J]. IEEE Geoscience and Remote Sensing Letters, 1, 309-312(2004).

    [12] AGUILAR M A, DEL MAR SALDAÑA M, AGUILAR F J, et al. Assessing geometric accuracy of the orthorectification process from GeoEye-1 and WorldView-2 panchromatic images[J]. International Journal of Applied Earth Observation and Geoinformation, 21, 427-435(2013).

    [13] ASADZADEH S, DE SOUZA FILHO C R. Investigating the capability of WorldView-3 superspectral data for direct hydrocarbon detection[J]. Remote Sensing of Environment, 173, 162-173(2016).

    [14] NGUYEN T T H, PHAM T A, LUONG T P. Estimate tropical forest stand volume using SPOT 5 satellite image[J]. IOP Conference Series:Earth and Environmental Science, 652, 012016(2021).

    [15] CAO F CH. The high-score series of remote sensing satellites is deployed in China’s Space “Wise Eye” - a review of China's high-score special construction[J]. Defense Industry Conversion in China, 28-33(2015).

    [16] ZENG W, LIN H, LI X Y, . Study on extracting forest information based on SV-1 image[J]. Journal of Central South University of Forestry & Technology, 40, 32-40(2020).

    [17] ZHANG ZH C. Jilin No. 1 satellite group[J]. Satellite Application, 1(2015).

    [18] CASOLINO M, PICOZZA P. Launch and commissioning of the PAMELA experiment on board the resurs-DK1 satellite[J]. Advances in Space Research, 41, 2064-2070(2008).

    [19] [19] KRISHNA B G, SRINIVASAN T P, SRIVASTAVA P K. An integrated approach f topographical mapping from space using Cartosat1 Cartosat2 imagery[C]ISPRS Congress 2008. 2008.

    [20] TU T M, HSU C L, TU P Y, et al. An adjustable pan-sharpening approach for IKONOS/QuickBird/GeoEye-1/WorldView-2 imagery[J]. IEEE Journal Selected Topics in Applied Earth Observations and Remote Sensing, 5, 125-134(2012).

    [21] MURTHY K, SHEARN M, SMILEY B D, et al. SkySat-1: Very high-resolution imagery from a small satellite[J]. Proceedings of SPIE, 9241, 92411e(2014).

    [22] LEVIN N, JOHANSEN K, HACKER J M, et al. A New source for high spatial resolution night time images —— the EROS-B Commercial Satellite[J]. Remote Sensing of Environment, 149, 1-12(2014).

    [23] BEN-DAVID A. Ofeq-7 bolsters Israel's intelligence coverage[J]. Jane's Defence Weekly, 44, 17(2007).

    [24] LIU J F, WANG H J, SUN D W, et al. On-orbit adjustment and compensation for large aperture optical system[J]. Acta Optica Sinica, 34(3):, 005, 2014(0322).

    [25] PANG ZH H, FAN X W, CHEN Q F, et al. Influence of surface-profile error of larger mirror on aberrations characteristics of optical system[J]. Acta Optica Sinica, 33, 0422002(2013).

    [26] LIU SH T, HU R, LI Q H, et al. Topology optimization-based lightweight primary mirror design of a large-aperture space telescope[J]. Applied Optics, 53, 8318-8325(2014).

    [27] HU R, LIU SH T, LI Q H. Topology-optimization-based design method of flexures for mounting the primary mirror of a large-aperture space telescope[J]. Applied Optics, 56, 4551-4560(2017).

    [28] YI K, MA P, QIU H, et al. Progress on large aperture transport mirrors[J]. Optics and Precision Engineering, 24, 2902-2907(2016).

    [29] CHANG J L, LI Q L, LI F Q, . Environmental adaptability assessment of the filter of space optical remote sensor detector[J]. Spacecraft Environment Engineering, 35, 87-91(2018).

    [30] ZHENG D H, CHEN L, ZHU W H. Research on adjusting and testing of off-axis paraboloid mirror with large aperture[J]. Proceedings of SPIE, 9684, 968406(2016).

    [31] MATHEW L M, DEEPAK B P, SABU B. Design and analysis of a metallic Ogive payload fairing for a new generation launch vehicle[J]. IOSR Journal of Mechanical and Civil Engineering, 13, 99-103(2016).

    [32] GUO J, GONG D P, ZHU L, et al. Calculation of overlapping pixels in interleaving assembly of CCD focal plane of mapping camera[J]. Optics and Precision Engineering, 21, 1251-1257(2013).

    [33] ZHANG Y L, LU B, ZHANG W T, et al. A new method for detecting moving objects in video[J]. Journal of University of Electronic Science and Technology of China, 48, 46-52(2019).

    [34] LIN H B, BO Y CH, WANG J D, et al. Research progress in super-resolution mapping from remotely sensed imagery[J]. Journal of Image and Graphics, 16, 495-502(2011).

    [35] SICA L. Effects of nonredundance on a synthetic-aperture imaging system[J]. Journal of the Optical Society of America A, 10, 567-572(1993).

    [36] [36] MACKENZIE C, SWEETMAN B. Snakes lasers[J]. Aviation Week & Space Technology, 2012.

    [37] MATTHEW F, MATTHEW R, DOUGLAS E, et al. The future of Earth observation in hydrology[J]. Hydrology and Earth System Sciences, 21, 3879-3914(2017).

    [38] WU T ZH, WANG H, ZHOU F, . The Lunar trail of GF-4 satellite and on-orbit knife-edge measurements of MTF[J]. Spacecraft Recovery & Remote Sensing, 40, 41-49(2019).

    [39] TONG X D. Progress in the construction of chinese major special project on high-resolution earth observation system[J]. Journal of Remote Sensing, 5, 775-780(2016).

    [40] [40] GUO J. Research on design manufacturing of large aperture space mirr of silicon carbide[D]. Changchun: Jilin University, 2019.

    [41] [41] SHAO M Q, Space camera optical structure integration optimization design method research[D]. University of Chinese Academy of Sciences (Changchun Institute of Optics, Fine Mechanics Physics, Chinese Academy of Sciences), 2021. DOI: 10.27522d.cnki.gkcgs.2021.000079.

    [42] WANG Y Q, WANG L, GUO W C, . Design and manufacture of space all-purpose double-faced reflective mirror[J]. Acta Optica Sinica, 35, 0428001(2015).

    [43] [43] JAHNS J J. TURUNEN, F. W (eds. ), Diffractive Optics f Industrial Commercial Applications[M], Berlin: Akademie Verlag, , Germany, 1997: 426

    [44] MADSEN C K. Linking diffractive and geometrical optics surface scattering at a fundamental level[J]. Optics and Photonics Journal, 12, 1-17(2022).

    [45] DUFRESNE E R, GRIER D G. Optical tweezer arrays and optical substrates created with diffractive optics[J]. Review of Scientific Instruments, 69, 1974-1977(1998).

    [46] ATCHESON P D, STEWART C, DOMBER J, et al. MOIRE: Initial demonstration of a transmissive diffractive membrane optic for large lightweight optical telescopes[J]. Proceedings of SPIE, 8442, 844221(2012).

    [47] ATCHESON P, DOMBER J, WHITEAKER K, et al. MOIRE: Ground demonstration of a large aperture diffractive transmissive telescope[J]. Proceedings of SPIE, 9143, 91431W(2014).

    [48] ZHAO X L, CHENG Z D, LIU J. Research on stealth protection technology for missile launchers in complex battlefield environments[J]. Modern Defence Technology, 146-150,160(2016).

    [49] [49] ATCHESON PAUL D. MOIRE: initial demonstration of a transmissive diffractive membrane optic f large lightweight optical telescopes[J]. 2012, 8442 : 84422184422114.

    [50] [50] DOMBER J L, PAUL D A, JEFF K. MOIRE: ground test bed results f a large membrane telescope[C]. Spacecraft Structures Conference. 2014.

    [51] [51] WANG R Q. Key Technology research on thin film components based on diffraction imaging system[D]. University of Chinese Academy of Sciences (Changchun Institute of Optics, Fine Mechanics Physics, Chinese Academy of Sciences), 2017.

    [52] [52] DOMBER J L, ATCHESON P D, KOMMERS J. MOIRE: Ground test bed results f a large membrane telescope[C]Spacecraft Structures Conference. 2014.

    [53] [53] TY W D, COPP T, CAMPBELL L, et al.. MOIRE gossamer space telescopemembrane analysis[C]Spacecraft Structures Conference. 2014.

    [54] STAGUHN J G, BENFORD D J, ALLEN C A, et al. Instrument performance of GISMO, a 2 millimeter tes bolometer camera used at the IRAM 30 m telescope[J]. Proceedings of SPIE, 7020, 702004(2008).

    [55] [55] ZHENG Y H. Space thinfilm diffraction telescope primary mirr unfolding technique study[D]. Xi''an Institute of Optics Precision Mechanics, Chinese Academy of Sciences, 2016.

    [56] CATALANO O. Extreme Universe Space Observatory-EUSO: An innovative project for the detection of extreme energy cosmic rays and neutrinos[J]. Il Nuovo Cimento C, 24, 445-469(2001).

    [57] SANTANGELO A, PETROLINI A. Observing ultra-high-energy cosmic particles from space: s-EUSO, super-extreme universe space observatory mission[J]. New Journal of Physics, 11, 065010(2009).

    [58] PETROLINI A. The extreme universe space observatory (EUSO) instrument[J]. Nuclear Physics B - Proceedings Supplements, 113, 329-336(2002).

    [59] TAKIZAWA Y, EBISUZAKI T, KAWASAKI Y, et al. JEM-EUSO: Extreme universe space observatory on JEM/ISS[J]. Nuclear Physics B-Proceedings Supplements, 166, 72-76(2007).

    [60] ANDERSEN G, ASMOLOV O, DEARBORN M E, et al. FalconSAT-7: a membrane photon sieve CubeSat solar telescope[J]. Proceedings of SPIE, 8442, 84421C(2012).

    [61] ANDERSEN G P, ASMOLOVA O. FalconSAT-7: a membrane space telescope[J]. Proceedings of SPIE, 9143, 91431X(2014).

    [62] ANDERSEN G, ASMOLOVA O, MCHARG M G, et al. FalconSAT-7: a membrane space solar telescope[J]. Proceedings of SPIE, 9904, 99041P(2016).

    [63] [63] DEARBN M, ERSEN G, MG M G, et al.. FALCONSAT7: A Deploy Able Solar Telescope Mission[C]28th Annual AIAAUSU Conference of Small Satellites, 2012.

    [64] [64] GUO M. Design implementation of a groundbased measurement control system f large scale satellite deployment mechanism[D]. Harbin Institute of Technology, 2017.

    [65] HYDE R A. Eyeglass. 1. Very large aperture diffractive telescopes[J]. Applied Optics, 38, 4198-4212(1999).

    [66] HYDE R A, DIXIT S N, WEISBERG A H, et al. Eyeglass: a very large aperture diffractive space telescope[J]. Proceedings of SPIE, 4849, 28-39(2002).

    [67] [67] HYDE R A, DIXIT S N, WEISBERG A H, et al. . Large aperture diffractive space telescope[J]. Proceedings of SPIE The International Society f Optical Engineering, 2001.

    [68] [68] HYDE R. Eyeglass large aperture, lightweight space optics FY2000 FY2002 LDRD strategic initiative[R]. Liverme: Lawrence Liverme National Lab. , 2003.

    [69] WANG H, KANG F Z, ZHAO W, XIE Y J. Optical design of an infrared diffraction telescope[J]. Journal of Infrared and Millimeter Waves, 35, 425-429(2016).

    [70] CHEN X L, FU D Y. Solutions for space optical remote sensor with large aperture and ultrahigh resolution[J]. Spacecraft Recovery & Remote Sensing, 24, 19-24(2003).

    [71] WANG R Q, ZHANG ZH Y, GUO CH L, et al. Effects of fabrication errors on diffraction efficiency for a diffractive membrane[J]. Chinese Optics Letters, 14, 120501(2016).

    [72] [72] XUE CH X, CUI Q F. Design of multilayer diffractive optical elements with polychromatic integral diffraction efficiency[J] Optics Letters, 2010, 35(7): 986988.

    [73] LIU M ZH, LIU H, XU W B, . Membrane photon sieve for space telescope[J]. Optics and Precision Engineering, 22, 2127-2134(2014).

    [74] ZHANG J, SU M Y, YIN G H, . Large-diameter membrane fresnel diffraction elements for space telescope[J]. Optics and Precision Engineering, 24, 1289-1296(2016).

    [75] [75] DANIEL J. SCHROEDER. Reflecting Telescopes in Astronomical Optics (Second Edition) [M]. Elsevier Inc, 2000, 112163.

    [76] [76] NICHOLAS G, KEDAR K. Digital Binary MEMS Wavefront Control, US, 8379292B2[P]. 20130219.

    [77] LIESENER J, HUPFER W J, GEHNER R, et al. Tests on micromirror arrays for adaptive optics[J]. Proceedings of SPIE, 5553, 319-329(2004).

    [78] DEKANY R G, MACMARTIN D G, CHANAN G A, et al. Advanced segmented silicon space telescope (ASSIST)[J]. Proceedings of SPIE, 4849, 103-111(2002).

    [79] AGRAWAL B, KUBBY J. Applications of MEMS in segmented mirror space telescopes[J]. Proceedings of SPIE, 7931, 793102(2011).

    [80] MARK C. The James Webb Space Telescope[J]. Advances in Space Research, 41, 1983-1991(2008).

    [81] DEAN B H, ARONSTEIN D L, SMITH J S, et al. Phase retrieval algorithm for JWST flight and testbed telescope[J]. Proceedings of SPIE, 6265, 626511(2006).

    [82] WRIGHT G S, RIEKE G H, COLINA L, et al. The JWST MIRI instrument concept[J]. Proceedings of SPIE, 5487, 653-663(2004).

    [83] FREESE K, ILIE C, SPOLYAR D, et al. Supermassive dark stars: detectable in JWST[J]. The Astrophysical Journal, 716, 1397-1407(2010).

    [84] [84] THOMAS E. Towards 1 m Resolution from GEO Executive Summary Rept[B]. Thales Alenia Space, Italy, 2010: 113.

    [85] BOLCAR M R, FEINBERG L, FRANCE K, et al. Initial Technology Assessment for the Large-Aperture UV-Optical-Infrared (LUVOIR) Mission Concept Study[J]. Proceedings of SPIE, 9904, 99040J(2016).

    [86] STAHL H P, HOPKINS R C. SLS Launched missions concept studies for LUVOIR mission[J]. Proceedings of SPIE, 9602, 960206(2015).

    [87] FRANCE K, FLEMING B, WEST G, et al. The LUVOIR ultraviolet multi-object spectrograph (LUMOS): instrument definition and design[J]. Proceedings of SPIE, 10397, 1039713(2017).

    [88] MENNESSON B, GAUDI S, SEAGER S, et al. The Habitable Exoplanet (HabEx) imaging mission: preliminary science drivers and technical requirements[J]. Proceedings of SPIE, 9904, 99040L(2016).

    [89] CHEN X L, YANG B X, WANG Y H, . Segmentation of primary mirror for the space deployable optical system[J]. Spacecraft Recovery & Remote Sensing, 29, 28-33(2008).

    [90] GUO CH L, CHEN CH ZH, CHEN J B, . Structure and mechanism technology of in-space manufacturing space optical telescope[J]. Journal of Astronautics, 43, 158-166(2022).

    [91] JIN J G, RUAN N J, SU Y, . Discussion for solution of huge space remote sensor primary mirror issue[J]. Space Electronic Technology, 13, 20-25,43(2016).

    [92] QIAO Y F, LIU S, DUAN X Y. Optical synthetic aperture imaging techniques and development[J]. Chinese Journal of Optics and Applied Optics, 2, 175-183(2009).

    [93] FAN W J, ZHOU B F, WANG H T. Research of Fourier phase in optical synthetic-aperture imaging technique[J]. Acta Optica Sinica, 24, 408-412(2004).

    [94] LUCKE R L, RICKARD L J. Photon-limited synthetic-aperture imaging for planet surface studies[J]. Applied Optics, 41, 5084-5095(2002).

    [95] LIU ZH, WANG SH Q, RAO CH H. The Co-phasing detection method for sparse optical synthetic aperture systems[J]. Chinese Physics B, 21, 069501(2012).

    [96] RHODES W T. Digital processing of synthetic aperture optical imagery[J]. Optical Engineering, 13, 267-274(1974).

    [97] WU Y, HUI M, LI W Q, et al. MTF improvement for optical synthetic aperture system via mid-frequency compensation[J]. Optics Express, 29, 10249-10264(2021).

    [98] CHUNG S J, MILLER D W, DE WECK O L. ARGOS testbed: study of multidisciplinary challenges of future spaceborne interferometric arrays[J]. Optical Engineering, 43, 2156-2167(2004).

    [99] [99] WONG M H. A dedicated space observaty f timedomain solar system science[Z]. AASDivision f Plaary Sciences Meeting Abstracts. 2009.

    [100] [100] CHUNG S J, LO B D M, MILLER D W, et al. . Multidisciplinary Control of a Sparse Interferometric Array Satellite Testbed[C]AIAA Guidance, Navigation, Control Conference Exhibit, AIAA, 2013.

    [101] LAWSON P R, LAY O P, MARTIN S R, et al. Terrestrial planet finder interferometer 2007—2008 progress and plans[J]. Proceedings of SPIE, 7013, 70132N(2008).

    [102] LAWSON P R, LAY O P, MARTIN S R, et al. Terrestrial planet finder interferometer: 2006—2007 progress and plans[J]. Proceedings of SPIE, 6693, 669308(2007).

    [103] BEICHMAN C, LAWSON P, LAY O, et al. Status of the terrestrial planet finder interferometer (TPF-I)[J]. Proceedings of SPIE, 6268, 62680S(2006).

    [104] LAWSON P R, AHMED A, GAPPINGER R O, et al. Terrestrial planet finder interferometer technology status and plans[J]. Proceedings of SPIE, 6268, 626828(2006).

    [105] GUARNIERI A M, BOMBACI O, CATALANO T F, et al. ARGOS: A fractioned geosynchronous SAR[J]. Acta Astronautica, 164, 444-457(2019).

    [106] QIAN J H, WU X Y, LIU H W, et al. The structure research and design for beam steering and adjustment in Golay3 sparse-aperture imaging system[J]. Applied Sciences, 12, 4003(2022).

    [107] STUBBS D, DUNCAN A, PITMAN J T, et al. Multiple instrument distributed aperture sensor (MIDAS) evolved design concept[J]. Proceedings of SPIE, 5550, 391-398(2004).

    [108] PITMAN J, DUNCAN A, STUBBS D, et al. Multiple instrument distributed aperture sensor (MIDAS) for remote sensing[J]. Proceedings of SPIE, 5570, 168-180(2004).

    [109] SCUDERI S, GIULIANI A, PARESCHI G, et al. The ASTRI Mini-Array of Cherenkov telescopes at the Observatorio del Teide[J]. Journal of High Energy Astrophysics, 35, 52-68(2022).

    [110] [110] SUZUMOTO R, IKARI S, MIYAMURA N, et al.. Experimental study f synthetic aperture telescope using fmation flying microsatellites f highfrequency highresolution GEO remote sensing[C]. 34th Annual Small Satellite Conference, 2020.

    [111] WANG D Y. Experimental study on imaging and image restoration of optical sparse aperture systems[J]. Optical Engineering, 46, 103201(2007).

    [112] MA J. Europe launched the darwin plan to hunt for extraterrestrial life[J]. Modern Science, 12-14(2007).

    [113] ZHOU CH H, WANG ZH Y, ZHU F. Status of development of large-aperture optical synthetic aperture imaging technology[J]. China Optics, 10, 25-38(2017).

    [114] [114] SUZUMOTO R, IKARI S, MIYAMURA N, et al.. Experimental study f synthetic aperture telescope using fmation flying microsatellites f highfrequency highresolution GEO remote sensing[C]. 34th Annual Small Satellite Conference. 2020.

    [115] XU W, JIN G, WANG J Q. Optical imaging technology of JL-1 lightweight high resolution multispectral remote sensing satellite[J]. Optics and Precision Engineering, 25, 1969-1978(2017).

    [116] [116] DUNCAN A L, KENDRICK R L. Segmented planar imaging detect f electrooptic reconnaissance: US, 8913859[P]. 20141216.

    [117] [117] DUNCAN A L, KENDRICK R L. Segmented planar imaging detect f electrooptic reconnaissance (SPIDER) Zoom: US, 10012827[P]. 20180703.

    [118] LV G M, LI Q, CHEN Y T, et al. An improved scheme and numerical simulation of segmented planar imaging detector for electro-optical reconnaissance[J]. Optical Review, 26, 664-675(2019).

    [119] CHU Q H, SHEN Y J, YUAN M, et al. Numerical simulation and optimal design of segmented planar imaging detector for electro-optical reconnaissance[J]. Optics Communications, 405, 288-296(2017).

    [120] YU G M, JIN L B, ZHOU F, . A review on development of segmented planar imaging detector for electro-optical reconnaissance system[J]. Spacecraft Recovery & Remote Sensing, 39, 1-9(2018).

    [121] [121] BADHAM K, KENDRICK R, WUCHENICH D, et al.. Photonic integrated circuitbased imaging system f SPIDER[C]. 2017 Conference on Lasers ElectroOptics Pacific Rim (CLEOPR), IEEE, 2017.

    [122] [122] DESEILLIGNY M P, PAPARODITIS N. A multiresolution optimizationbased image matching approach: an application to surface reconstruction from Spot5hrs stereo imagery[C]Proc of the ISPRS Conference Topographic Mapping from Space. US, 2006.

    [123] MURTHY K, SHEARN M, SMILEY B D, et al. SkySat-1: very high-resolution imagery from a small satellite[J]. Proceedings of SPIE, 9241, 92411E(2014).

    [124] [124] DINARDJ A, ANFLO K, FRIEDHOFF P. Onbit commissioning of high perfmance green propulsion (HPGP) in the SkySat constellation[C]. Small Satellite Conference, 2017.

    [125] ZHOU Y, WANG P, FU D Y, . System innovation and enlightenment of SkySat[J]. Spacecraft Engineering, 24, 91-98(2015).

    [126] JOHANSEN K, DUNNE A F, TU Y H, et al. Monitoring coastal water flow dynamics using sub-daily high-resolution SkySat satellite and UAV-based imagery[J]. Water Research, 219, 118531(2022).

    [127] LI F, YANG X, LU X T, . A new hyper-temporal imaging mode for spaceborne CMOS cameras[J]. Journal of Remote Sensing, 25, 514-525(2021).

    [128] XIE W, CHEN H, QIN Q Q. Blind super-resolution image reconstruction based on multiframe video sequence[J]. Journal of Data Acquisition & Processing, 26, 1-7(2011).

    [129] ZHENG G A, HORSTMEYER R, YANG C H E. Wide-field, high-resolution Fourier ptychographic microscopy[J]. Nature Photonics, 7, 739-745(2013).

    [130] HOLLOWAY J, WU Y, SHARMA M K, et al. SAVI: Synthetic apertures for long-range, subdiffraction-limited visible imaging using fourier ptychography[J]. Science Advances, 3, e1602564(2017).

    [131] DONG S Y, HORSTMEYER R, SHIRADKAR R, et al. Aperture-scanning Fourier ptychography for 3D refocusing and super-resolution macroscopic imaging[J]. Optics Express, 22, 13586-13599(2014).

    [132] HOLLOWAY J, ASIF M S, SHARMA M K, et al. Toward long-distance subdiffraction imaging using coherent camera arrays[J]. IEEE Transactions on Computational Imaging, 2, 251-265(2017).

    [133] WANG C Y, HU M, TAKASHIMA Y, et al. Snapshot Ptychography on Array cameras[J]. Optics Express, 30, 2585-2598(2022).

    [134] WU J CH, YANG F, CAO L C. Resolution enhancement of long-range imaging with sparse apertures[J]. Optics and Lasers in Engineering, 155, 107068(2022).

    [135] ZHAO M, WANG X M, ZHANG X H, . Experimental research on macroscopic Fourier ptychography super-resolution imaging[J]. Laser & Optoelectronics Progress, 56, 101-107(2019).

    [136] [136] XIANG M. Study on key problems of macroscopic Fourier ptychography imaging[D]. Xi’an: University of Chinese Academy of Sciences, 2021. (in Chinese)

    CLP Journals

    [1] Yao-hui HAN, Kun WANG, You-qiang ZHU, Xin-yue LIU. Photonic-integrated interferometric array field-of-view splicing subaperture optical path design[J]. Chinese Optics, 2024, 17(6): 1458

    [2] Hong-min MAO, Zhi-ya DING, Yan-yan YANG, Su-qi JIANG, Jian-tao PENG, Nan CAO, Li-fa HU, Zhao-liang CAO. Effect of atmospheric turbulence on imaging quality of high-resolution remote sensing satellites[J]. Chinese Optics, 2024, 17(1): 167

    Tools

    Get Citation

    Copy Citation Text

    Yun SU, Jing-jing GE, Ye-chao WANG, Le-ran WANG, Yu WANG, Zi-xi ZHENG, Xiao-peng SHAO. Research progress on high-resolution imaging system for optical remote sensing in aerospace[J]. Chinese Optics, 2023, 16(2): 258

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Review

    Received: Apr. 25, 2022

    Accepted: Jul. 26, 2022

    Published Online: Apr. 4, 2023

    The Author Email:

    DOI:10.37188/CO.2022-0085

    Topics