Chinese Optics, Volume. 16, Issue 2, 258(2023)

Research progress on high-resolution imaging system for optical remote sensing in aerospace

Yun SU1,2,3,4,5, Jing-jing GE3,4,5、*, Ye-chao WANG3,4,5, Le-ran WANG3,4,5, Yu WANG3,4,5, Zi-xi ZHENG3,4,5, and Xiao-peng SHAO1,2、*
Author Affiliations
  • 1School of Optoelectronic Engineering, Xidian University, Xi 'an 710071, China
  • 2Xi 'an Key Laboratory of Computational Imaging, Xi 'an 710071, China
  • 3Beijing Institute of Space Mechanics & Electricity, Beijing 100094, China
  • 4Beijing Key Laboratory of Advanced Optical Remote Sensing Technology, Beijing 100094, China
  • 5Core Professional Laboratory of Spatial Laser Information Perception Technology, Beijing 100094, China
  • show less
    Figures & Tables(53)
    High-resolution optical remote sensing satellites with 1 m resolution
    Technical changes of high resolution optical remote sensing satellite
    GEO-oculus surveillance system
    GF-4 remote sensing satellite[39]
    4 m SiC aspherical mirror[41]
    MOIRE concept map[48]
    Optical components with diffraction pattern prepared by MOIRE project[49]
    1/8 ground prototype developed by MOIRE system[50]
    Space environment test prototype developed by MOIRE project[51]
    Schematic diagram of GISMO satellite formation principle[55]
    ESA-EUSO concept diagram
    Structural diagram of JEM-EUSO telescope[56]
    Schematic diagram of “photon screen” imaging system carried by “falcon-7” microsatellite[63]
    Diffraction imaging space telescope[64]
    Primary mirror of 5 m aperture diffraction telescope[69]
    Optical path design of SMT telescope (right) and SMT telescope (left) developed by NRO[79]
    On orbit deployment of the primary mirror of the James Webb Space Telescope[80]
    James Webb unfold block telescope
    Optical camera in GEO with 2 m resolution
    LUVOIR-A/LUVOIR-B models
    Typical on-orbit assembly projects
    Configuration of Fizeau interferometric synthetic aperture imaging system
    Star-9 system[99]
    Space interferometer TPF-I from the U.S.
    Schematic diagram of collecting telescope TPF-I
    Schematic diagram of beam synthesis telescope TPF-I
    GOLAY-3 adaptive reconnaissance optical satellite system[106]
    Schematic diagram of MIDAS system[110]
    MIDAS optical system[110]
    Layout of ONERA sparse aperture system
    Principle diagram of ONERA sparse aperture system co-phasing test
    Simulation results of recovery images of ONERA sparse aperture system[111]
    Configuration of Darwin’s Mission[113]
    Concept map of FFSAT
    3-axis piezo stage
    (a) Original object; (b) image obtained by SPIDER technology[121]
    Schematic diagram of SPIDER system
    SPIDER developed by Lockheed Martin company
    Imaging effect of SPOT-5 subpixel super resolution imaging (Supermode mode)
    SkySat satellite orbit distribution
    Schematic diagram of spectrum imaging for SkySat-1 detector
    RAW image acquired by satellite (left) VS super resolution image after 20 frames combination (right)[123]
    Raw low-resolution image
    Super resolution results
    Raw low-resolution data[130]
    Super resolution imaging result[133]
    Schematic diagram of coherent aperture synthesis super resolution imaging[133]
    Experimental test scenario of coherent aperture synthesis supermetry
    • Table 1. Optical parameters of high-resolution optical remote sensing satellites

      View table
      View in Article

      Table 1. Optical parameters of high-resolution optical remote sensing satellites

      序号名称国家年份分辨率/m轨道/km
      1QuickBird-2美国20010.61450
      2IGS-1A日本20031500
      3OrbView-3美国20031470
      4Resurs-DK1俄罗斯20061360~610
      5EROS B以色列20060.7500
      6Ofeq-7以色列20070.5300~600
      7GeoEye-1美国20080.41681
      8KH-13美国20080.07
      9CartoSat-2印度20100.8635
      10Pleiades-4法国20110.5694
      11Worldview-3美国20140.3617
      12Gaojing-1中国20160.5530
      13Worldview-4美国20160.25617
      14BlackSky-4美国20180.85450
      15Hongqi1-H9中国20200.75481.6
      16GFDM中国20200.5643.8
      17IGS-Optical 7日本20200.3485
      18SkySat-16美国20200.5456
      19JL-GF-02D中国20210.75650
      20WorldView –Legion美国预计20220.3
    • Table 2. Index parameters of JEM-EUSO

      View table
      View in Article

      Table 2. Index parameters of JEM-EUSO

      探测谱段/nm330~400
      口径/m2.5
      视场角/(°)±30
      可观测区域/km2>1.9×105
      焦面面积/m24.5
      像元数2.0×105
      像元尺寸/mm4.5
      角分辨率/(°)0.1
      时间分辨率/μs≤2.5
    • Table 3. Comparison of large aperture imaging observation spacecraft

      View table
      View in Article

      Table 3. Comparison of large aperture imaging observation spacecraft

      参数口径/m主镜面密度/(kg·m−2) 运行温度/K
      JWST6.5分块2050
      HST2.4单体180300
      “赫歇尔空间望远镜”3.5单体21.890
      KH-11 侦察卫星2.4单体不详常温
      KH-12侦察卫星约3.3单体不详常温
    • Table 4. Basic parameters of JWST

      View table
      View in Article

      Table 4. Basic parameters of JWST

      参数基本情况
      质量总质量约6500 kg,主镜质量约705 kg
      功率/W2000
      最大数据速率/(Mbit·s−1) 28
      主镜直径6.5 m,由 18 块镀金六边形铍镜组成, 每个镜块的直径为1.32 m,焦距为131.4 m
      遮阳板5层可展开遮阳板,展开约21.2 m×14.2 m
      观测波长可见光、近红外、中红外(0.6~28.5 μm)
      光学分辨率大约0.1
      仪器近红外相机、近红外光谱仪、中红外仪器、带 有精巧导航系统的近红外成像仪与无缝光谱仪
      轨道日地拉格朗日L2点晕轨道
      工作温度/°C−235
      任务寿命5年,目标10年以上
    • Table 5. Summary of different types of remote sensing imaging technology

      View table
      View in Article

      Table 5. Summary of different types of remote sensing imaging technology

      序号技术名称优点缺点
      1大口径单体光学遥感成像技术技术成熟度高、 成像分辨率高 口径受限、系统精密、加工、装调 难度大
      2单体衍射元件成像系统系统衍射效率高成像质量低、衍射元件复杂
      3空间展开式分块镜拼接主镜技术易满足发射要求、可实现分辨率高设计难度大、镜面调整难度大
      4光学综合孔径成像系统可实现大口径成像、 系统结构分布 式灵活布置 子孔径共相位调整难度大
      5分块式平板光电成像探测系统系统集成度高、可实现轻小型化成像分辨率较低、加工工艺复杂
      6器件亚像素 拼接技术 可实现超分辨率成像、可行性高分辨率提升有限
      7多帧超分辨率成像技术可实现超分辨率成像、技术成熟分辨率提升有限、时间分辨率低
      8计算超分主动探测可实现超分辨率 成像、系统可灵活 分布式构型 远距离对主动光源功率要求过高、易受噪声影响
    Tools

    Get Citation

    Copy Citation Text

    Yun SU, Jing-jing GE, Ye-chao WANG, Le-ran WANG, Yu WANG, Zi-xi ZHENG, Xiao-peng SHAO. Research progress on high-resolution imaging system for optical remote sensing in aerospace[J]. Chinese Optics, 2023, 16(2): 258

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Review

    Received: Apr. 25, 2022

    Accepted: Jul. 26, 2022

    Published Online: Apr. 4, 2023

    The Author Email:

    DOI:10.37188/CO.2022-0085

    Topics