Acta Optica Sinica, Volume. 44, Issue 5, 0517002(2024)

Online Detection System of Human Exhaled Nitric Oxide Based on TDLAS Technology

Weijie He1,2, Juncheng Lu2, Lu Gao2, Qiong Wu2, Xiaoyu Wu3, Huagui Nie4, Xiaojing Chen5、**, and Jie Shao2、*
Author Affiliations
  • 1College of Life and Environmental Science, Wenzhou University, Wenzhou 325035, Zhejiang , China
  • 2Key Laboratory of Researching Optical Information Detecting and Display Technology in Zhejiang Province, Zhejiang Normal University, Jinhua 321004, Zhejiang , China
  • 3Zhejiang Jinhua Guangfu Tumor Hospital, Jinhua 321000, Zhejiang , China
  • 4College of Chemistry & Materials Engineering, Wenzhou University, Wenzhou 325035, Zhejiang , China
  • 5College of Electrical and Electronic Engineering, Wenzhou University, Wenzhou 325035, Zhejiang , China
  • show less
    References(29)

    [1] Sun X L, Zhang X H, Cao X W. The diagnostic value of fractional exhaled nitric oxide in bronchial asthma and its relationship with disease severity[J]. China Medical Herald, 17, 82-85(2020).

    [2] Chen L C, Wu L L, Lu D Z et al. The value of fractional exhaled nitric oxide and impulse oscillometric and spirometric parameters for predicting bronchial hyperresponsiveness in adults with chronic cough[J]. Journal of Asthma and Allergy, 14, 1065-1073(2021).

    [4] Tiotiu A. Biomarkers in asthma: state of the art[J]. Asthma Research and Practice, 4, 10(2018).

    [5] Paro-Heitor M L Z, Bussamra M H C F, Saraiva-Romanholo B M et al. Exhaled nitric oxide for monitoring childhood asthma inflammation compared to sputum analysis, serum interleukins and pulmonary function[J]. Pediatric Pulmonology, 43, 134-141(2008).

    [6] Maniscalco M, Vitale C, Vatrella A et al. Fractional exhaled nitric oxide-measuring devices: technology update[J]. Medical Devices, 9, 151-160(2016).

    [7] Cristescu S M, Mandon J, Harren F J M et al. Methods of NO detection in exhaled breath[J]. Journal of Breath Research, 7, 017104(2013).

    [8] Wang C J, Sahay P. Breath analysis using laser spectroscopic techniques: breath biomarkers, spectral fingerprints, and detection limits[J]. Sensors, 9, 8230-8262(2009).

    [9] Borrill Z, Clough D, Truman N et al. A comparison of exhaled nitric oxide measurements performed using three different analysers[J]. Respiratory Medicine, 100, 1392-1396(2006).

    [10] Mandon J, Högman M, Merkus P J F M et al. Exhaled nitric oxide monitoring by quantum cascade laser: comparison with chemiluminescent and electrochemical sensors[J]. Journal of Biomedical Optics, 17, 017003(2012).

    [11] Dunlea E J, Herndon S C, Nelson D D et al. Evaluation of nitrogen dioxide chemiluminescence monitors in a polluted urban environment[J]. Atmospheric Chemistry and Physics, 7, 2691-2704(2007).

    [12] Wany A, Gupta A K, Kumari A et al. Chemiluminescence detection of nitric oxide from roots, leaves, and root mitochondria[J]. Methods in Molecular Biology, 1424, 15-29(2016).

    [13] Menou A, Babeanu D, Paruit H N et al. Normal values of offline exhaled and nasal nitric oxide in healthy children and teens using chemiluminescence[J]. Journal of Breath Research, 11, 036008(2017).

    [14] Brooks C R, Brogan S B M, van Dalen C J et al. Measurement of exhaled nitric oxide in a general population sample: a comparison of the Medisoft HypAir FENO and Aerocrine NIOX analyzers[J]. The Journal of Asthma, 48, 324-328(2011).

    [15] Mandon J, Högman M, Merkus P J F M et al. Quantum cascade laser for breath analysis: application to nitric oxide monitoring[C], LM3B.6(2012).

    [16] Xu J, Li Y F, Cheng Y et al. Development of methane leakage telemetry system based on TDLAS-WMS[J]. Laser & Optoelectronics Progress, 60, 0628006(2023).

    [17] Xin W H, Ren Z Y, Fan J X et al. Design and implementation of a field programmable gate array-based signal control system for tunable diode laser absorption spectroscopy-wavelength modulation spectroscopy[J]. Laser & Optoelectronics Progress, 60, 0530001(2023).

    [18] Wang X, Jing C R, Hou K X et al. Online detection of human-exhaled end-tidal carbon dioxide using tunable semiconductor absorption spectroscopy[J]. Chinese Journal of Lasers, 47, 0311002(2020).

    [19] Wang X, Gao G Z, Long F Y et al. CO volume fraction measurement based on wavelength modulated cavity-enhanced absorption spectroscopy[J]. Chinese Journal of Lasers, 50, 1311001(2023).

    [20] Li M Y, Wang F, Zhang Y Q. Measurement of nitric oxide with low concentration based on mid-infrared laser absorption spectroscopy[J]. Laser & Optoelectronics Progress, 55, 053002(2018).

    [21] Spagnolo V, Lewicki R, Dong L et al. Quantum-cascade-laser-based optoacoustic detection for breath sensor applications[C], 332-335(2011).

    [22] Ai Y K, Li J, Li Q Y et al. Cavity ringdown spectroscopy of nitric oxide in the ultraviolet region for human breath test[J]. Journal of Breath Research, 14, 037101(2020).

    [23] Namjou K, Roller C B, Reich T E et al. Determination of exhaled nitric oxide distributions in a diverse sample population using tunable diode laser absorption spectroscopy[J]. Applied Physics B, 85, 427-435(2006).

    [24] Liu Y H, Ma Y F. Advances in multipass cell for absorption spectroscopy-based trace gas sensing technology[J]. Chinese Optics Letters, 21, 033001(2023).

    [25] Xin Z. Diode laser absorption sensors for combustion control[D](2005).

    [26] Kluczynski P, Gustafsson J, Lindberg Å M et al. Wavelength modulation absorption spectrometry: an extensive scrutiny of the generation of signals[J]. Spectrochimica Acta Part B: Atomic Spectroscopy, 56, 1277-1354(2001).

    [27] Zhou S, Han Y L, Li B C. Pressure optimization of an EC-QCL based cavity ring-down spectroscopy instrument for exhaled NO detection[J]. Applied Physics B, 124, 27(2018).

    [28] Rieker G B, Jeffries J B, Hanson R K. Calibration-free wavelength-modulation spectroscopy for measurements of gas temperature and concentration in harsh environments[J]. Applied Optics, 48, 5546-5560(2009).

    [29] McCurdy M R, Bakhirkin Y A, Wysocki G et al. Performance of an exhaled nitric oxide and carbon dioxide sensor using quantum cascade laser-based integrated cavity output spectroscopy[J]. Journal of Biomedical Optics, 12, 034034(2007).

    [30] Petralia L S, Bahl A, Peverall R et al. Accurate real-time FENO expirograms using complementary optical sensors[J]. Journal of Breath Research, 14, 047102(2020).

    Tools

    Get Citation

    Copy Citation Text

    Weijie He, Juncheng Lu, Lu Gao, Qiong Wu, Xiaoyu Wu, Huagui Nie, Xiaojing Chen, Jie Shao. Online Detection System of Human Exhaled Nitric Oxide Based on TDLAS Technology[J]. Acta Optica Sinica, 2024, 44(5): 0517002

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Medical optics and biotechnology

    Received: Dec. 1, 2023

    Accepted: Jan. 5, 2024

    Published Online: Mar. 15, 2024

    The Author Email: Chen Xiaojing (chenxj@wzu.edu.cn), Shao Jie (shaojie@zjnu.cn)

    DOI:10.3788/AOS231867

    CSTR:32393.14.AOS231867

    Topics