Chinese Journal of Lasers, Volume. 51, Issue 7, 0701007(2024)
High‑Power Free‑Electron Laser Sources Based on Energy Recovery Linacs for Extreme Ultraviolet Lithography
[2] Kaiser N, Yulin S, Perske M et al. High performance EUV multilayer optics[J]. Proceedings of SPIE, 7101, 71010Z(2008).
[3] Brandt D C, Fomenkov I V, Farrar N R et al. CO2/Sn LPP EUV sources for device development and HVM[J]. Proceedings of SPIE, 8679, 86791G(2013).
[4] Mizoguchi H, Tomuro H, Nishimura Y et al. Update of >300 W high power LPP-EUV source challenge-IV for semiconductor HVM[J]. Proceedings of SPIE, 11854, 118540K(2021).
[5] Böwering N, Meier C. In situ transformation and cleaning of tin-drop contamination on mirrors for extreme ultraviolet light[J]. Journal of Vacuum Science & Technology B, 36, 021602(2018).
[6] Lin N, Chen Y Y, Wei X et al. Spectral purity systems applied for laser-produced plasma extreme ultraviolet lithography sources: a review[J]. High Power Laser Science and Engineering, 11, e64(2023).
[7] de Bisschop P, Hendrickx E. Stochastic printing failures in EUV lithography[J]. Proceedings of SPIE, 10957, 109570E(2019).
[8] de Bisschop P, Hendrickx E. Stochastic effects in EUV lithography[J]. Proceedings of SPIE, 10583, 105831K(2018).
[9] Nakamura N, Kato R, Sakai H et al. High-power EUV free-electron laser for future lithography[J]. Japanese Journal of Applied Physics, 62, SG0809(2023).
[10] Zong N, Hu W M, Wang Z M et al. Research progress on laser-produced plasma light source for 13.5 nm extreme ultraviolet lithography[J]. Chinese Optics, 13, 28-42(2020).
[11] Yang D K, Wang D, Huang Q S et al. The development of laser-produced plasma EUV light source[J]. Chip, 1, 100019(2022).
[12] Fomenkov I, Brandt D, Ershov A et al. Light sources for high-volume manufacturing EUV lithography: technology, performance, and power scaling[J]. Advanced Optical Technologies, 6, 173-186(2017).
[13] Kwan T, Dawson J M, Lin A T. Free electron laser[J]. The Physics of Fluids, 20, 581-588(1977).
[15] Goldstein M, Lee S H, Shroff Y A et al. FEL applications in EUV lithography[C], 422-425(2005).
[16] Pagani C, Saldin E L, Schneidmiller E A et al. Design considerations of 10 kW-scale, extreme ultraviolet SASE FEL for lithography[J]. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 475, 391-396(2001).
[18] Kim K J, Huang Z R, Lindberg R et al[M]. Synchrotron radiation and free-electron lasers(2018).
[19] Li P, Li M, Wu D et al. Development strategy of free electron laser technology in China[J]. Strategic study of CAE, 22, 35-41(2020).
[20] Zhou K, Li P, Zhou Z et al. Status and upgrade plan of CAEP THz-FEL facility[J]. High Power Laser and Particle Beams, 34, 220091(2022).
[21] Li H T, He Z G, Wu F F et al. Hefei infrared free-electron laser facility[J]. Chinese Journal of Lasers, 48, 1700001(2021).
[22] Zhao Z T, Wang D, Bucksbaum P H et al. Brighter and faster: prospects and challenges of X-ray free electron lasers[J]. Physics, 44, 456-457(2015).
[23] Hajima R. Energy recovery linacs for light sources[J]. Reviews of Accelerator Science and Technology, 3, 121-146(2010).
[24] Merminga L, Douglas D R, Krafft G A. High-current energy-recovering electron linacs[J]. Annual Review of Nuclear and Particle Science, 53, 387-429(2003).
[25] Madey J M J. Stimulated emission of bremsstrahlung in a periodic magnetic field[J]. Journal of Applied Physics, 42, 1906-1913(1971).
[26] Tigner M. A possible apparatus for electron clashing-beam experiments[J]. Il Nuovo Cimento (1955-1965), 37, 1228-1231(1965).
[27] Schriber S O, Funk L W, Hodge S B et al. Experimental measurements on a 25 MeV reflexotron[J]. IEEE Transactions on Nuclear Science, 24, 1061-1063(1977).
[28] Cardman L S, Harwood L, Jefferson T. The JLAB 12 GeV energy upgrade of CEBAF for QCD and hadronic physics[C], 58-62(2007).
[29] Benson S V, Beard K, Behre C et al. High power lasing in the IR Upgrade FEL at Jefferson Lab[R](2004).
[30] Thomas A W, Williams G P. The free electron laser at Jefferson lab: the technology and the science[J]. Proceedings of the IEEE, 95, 1679-1682(2007).
[32] Neil G R, Benson S V, Biallas G et al. The Jefferson lab free electron laser program[J]. Japanese Journal of Applied Physics, 41, 15(2002).
[33] Benson S, Beard K, Biallas G et al. High power operation of the JLab IR FEL driver accelerator[C], 79-81(2007).
[34] Benson S V, Douglas D, Neil G R et al. The Jefferson lab free electron laser program[J]. Journal of Physics: Conference Series, 299, 012014(2011).
[35] Shevchenko O A, Vinokurov N A, Arbuzov V S et al. The Novosibirsk free-electron laser facility[J]. Bulletin of the Russian Academy of Sciences: Physics, 83, 228-231(2019).
[36] Gavrilov N G, Knyazev B A, Kolobanov E I et al. Status of the Novosibirsk high-power terahertz FEL[J]. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 575, 54-57(2007).
[37] Poole M W, Bennett S L, Bowler M A et al. 4GLS: a new type of fourth generation light source facility[C], 189-191(2004).
[39] Hajima R, Nishimori N, Nagai R et al. Demonstration of a high-power FEL oscillator with high extraction-efficiency[C], 2733-2735(2001).
[43] Honda Y, Adachi M, Eguchi S et al. Construction and commissioning of mid-infrared self-amplified spontaneous emission free-electron laser at compact energy recovery linac[J]. The Review of Scientific Instruments, 92, 113101(2021).
[44] Xiao X G. Preliminary study on numerical simulation and energy recovery of 30 MeV Linac[D](2003).
[45] Wang G M, Chao Y C, Liu C Y et al. Energy recovery transport design for PKU FEL[C], 1191-1193(2007).
[47] Chen S, Huang S L, Li Y M et al. Multi-pass, multi-bunch beam breakup for 9-cell Tesla cavities in the ERL[J]. Chinese Physics C, 37, 087001(2013).
[48] Wang S H, Wang J Q, Chen S Y et al. Design studies on the ERL-FEL test facility at IHEP, Beijing[J]. Chinese Physics C, 36, 469-474(2012).
[49] Cui X H, Jiao Y, Wang J Q et al. BBU effect in an ERL-FEL two-purpose test facility[J]. Chinese Physics C, 37, 077005(2013).
[50] Jiao Y, Xiao O Z. Beam dynamics studies of the photo-injector in low-charge operation mode for the ERL test facility at IHEP[J]. Chinese Physics C, 38, 067003(2014).
[52] Nakamura N, Kato R, Miyajima T et al. S2E simulation of an ERL-based high-power EUV-FEL source for lithography[J]. Journal of Physics: Conference Series, 874, 012013(2017).
[54] Kawata H, Nakamura N, Sakai H et al. High power light source for future extreme ultraviolet lithography based on energy-recovery linac free-electron laser[J]. Journal of Micro/Nanopatterning, Materials, and Metrology, 21, 021210(2022).
[55] Socol Y, Kulipanov G N, Matveenko A N et al. Compact 13.5-nm free-electron laser for extreme ultraviolet lithography[J]. Physical Review Special Topics - Accelerators and Beams, 14, 040702(2011).
[56] Zhao Z T, Wang Z, Feng C et al. Energy recovery linac based fully coherent light source[J]. Scientific Reports, 11, 23875(2021).
[57] Jiang B C, Feng C, Li C L et al. A synchrotron-based kilowatt-level radiation source for EUV lithography[J]. Scientific Reports, 12, 3325(2022).
[58] Feng C, Zhao Z T. A storage ring based free-electron laser for generating ultrashort coherent EUV and X-ray radiation[J]. Scientific Reports, 7, 4724(2017).
[59] Tang C X, Deng X J. Steady-state micro-bunching accelerator light source[J]. Acta Physica Sinica, 71, 152901(2022).
[60] Deng X J, Chao A, Feikes J et al. Experimental demonstration of the mechanism of steady-state microbunching[J]. Nature, 590, 576-579(2021).
[62] Quan S W, Hao J K, Lin L et al. Stable operation of the DC-SRF photoinjector[J]. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 798, 117-120(2015).
[63] Zhao S, Huang S L, Lin L et al. Longitudinal phase space improvement of a continuous-wave photoinjector toward X-ray free-electron laser application[J]. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 1018, 165796(2021).
[64] Li Y M, Zhu F, Quan S W et al. The design of a five-cell high-current superconducting cavity[J]. Chinese Physics C, 36, 74-79(2012).
[65] Huang S L, Liu K X. Energy recovery linac light source[J]. High Power Laser and Particle Beams, 34, 104011(2022).
[66] Zhou K, Li P, Xu H X et al. General design of infrared terahertz free-electron laser facility of Chinese academy of engineering physics[J]. Chinese Journal of Lasers, 50, 1718001(2023).
Get Citation
Copy Citation Text
Kui Zhou, Peng Li, Dai Wu, Ming Li. High‑Power Free‑Electron Laser Sources Based on Energy Recovery Linacs for Extreme Ultraviolet Lithography[J]. Chinese Journal of Lasers, 2024, 51(7): 0701007
Category: laser devices and laser physics
Received: Dec. 11, 2023
Accepted: Feb. 22, 2024
Published Online: Mar. 29, 2024
The Author Email: Peng Li (burnlife@sina.com)
CSTR:32183.14.CJL231496