Chinese Journal of Lasers, Volume. 52, Issue 4, 0402408(2025)
Microstructure and Mechanical Properties of Graded Lattice Structures Formed via Selective Laser Melting Forming
Fig. 1. SEM morphology and particle size distribution of Ti-6Al-4V powder. (a) Powder morphology; (b) powder size distribution;
Fig. 2. Three-dimensional model of BCC lattice structures. (a) BCC gradient cell is transitioned continuously at the junction; (b) ZL-BCC-A; (c) ZL-BCC-B; (d) ZL-BCC-C; (e) ZC-BCC; (f) HD-BCC
Fig. 3. Three-dimensional model of FCC lattice structures. (a) FCC gradient cell is transitioned continuously at the junction; (b) ZL-FCC-A; (c) ZL-FCC-B; (d) ZL-FCC-C; (e) ZC-FCC; (f) HD-FCC
Fig. 4. Forming simulation of linear gradient lattice structures. (a) Forming stress in BCC structure; (b) deformation in BCC structure along forming direction; (c) forming stress in FCC structure; (d) deformation in FCC structure along forming direction
Fig. 5. SLM formed gradient lattice structures. (a) BCC-XY plane; (b) FCC-XY plane; (c) BCC-XZ plane; (d) FCC-XZ plane
Fig. 6. Microstructures at lattice beam. (a)‒(b) Microstructures of cross section; (c)‒(d) microstructures of longitudinal section
Fig. 7. EBSD orientation diagrams at lattice node (IPF: inverse pole figure). (a) IPF-X; (b) IPF-Y; (c) IPF-Z; (d) reconstruction of β-phase IPF-Z
Fig. 8. EBSD orientation diagrams at the lattice beam. (a) IPF-X; (b) IPF-Y; (c) IPF-Z; (d) reconstruction of β-phase IPF-Z
Fig. 9. Lattice structure defects. (a) Surface coated with powder; (b) unmelted powder; (c) lack of fusion; (d) hole
Fig. 10. Micro-CT analysis showing relative density of the lattice structure. (a) X-Z plane; (b) X-Y plane; (c) defect distribution
Fig. 11. Stress-strain curves of gradient lattice structures. (a) BCC structures; (b) FCC structures
Fig. 12. Static compression macroscopic morphology. (a) HD-BCC-∅1; (b) ZL-BCC-A; (c) ZL-BCC-B; (d) ZL-BCC-C; (e) ZC-BCC; (f) HD-FCC-∅1; (g) ZL-FCC-A; (h) ZL-FCC-B; (i) ZL-FCC-C; (j) ZC-FCC
Fig. 13. Force analysis and numerical simulation of BCC lattice structures. (a)‒(c) Force analysis of cell unit; (d) ZL-BCC-A numerical simulation; (e)‒(f) HD-BCC-∅1 numerical simulation; (g)‒(h) ZL-BCC-C numerical simulation
Fig. 14. Force analysis and numerical simulation of FCC lattice structures. (a)‒(b) Force analysis of cell unit; (c) ZL-FCC-A numerical simulation; (d)‒(e) HD-FCC-∅1 numerical simulation; (f)‒(g) ZL-FCC-C numerical simulation
Fig. 16. Energy absorption curves of BCC and FCC structures. (a) BCC structures; (b) FCC structures
Fig. 17. Energy absorption efficiency curves of BCC and FCC structures. (a) BCC structures; (b) FCC structures
|
|
Get Citation
Copy Citation Text
Qulong Wei, Lihong Jiang, Zheng Liu, Mingjie Zhao, Guangang Wang, Zhenghua Guo. Microstructure and Mechanical Properties of Graded Lattice Structures Formed via Selective Laser Melting Forming[J]. Chinese Journal of Lasers, 2025, 52(4): 0402408
Category: Laser Micro-Nano Manufacturing
Received: Jun. 20, 2024
Accepted: Aug. 2, 2024
Published Online: Jan. 17, 2025
The Author Email: Jiang Lihong (jianglihong1027@126.com)
CSTR:32183.14.CJL240987