Acta Optica Sinica, Volume. 43, Issue 17, 1714009(2023)
Research Progress in Tandem-Pumped High-Power and High-Beam Quality Ytterbium-Doped Fiber Laser
[1] Richardson D J, Nilsson J, Clarkson W A. High power fiber lasers: current status and future perspectives[J]. Journal of the Optical Society of America B, 27, B63-B92(2010).
[2] Zervas M N, Codemard C A. High power fiber lasers: a review[J]. IEEE Journal of Selected Topics in Quantum Electronics, 20, 219-241(2014).
[3] Jauregui C, Limpert J, Tünnermann A. High-power fibre lasers[J]. Nature Photonics, 7, 861-867(2013).
[4] Li F Y, Li Y, Song H Q et al. The national optical fiber material devices achieve high SRS rejection ratio of 20.88 kW output[J]. Chinese Journal of Lasers, 48, 2116002(2021).
[5] Lin A X, Xiao Q R, Ni L et al. Domestic YDF active fiber realizes single fiber 20 kW laser output[J]. Chinese Journal of Lasers, 48, 0916003(2021).
[6] Xiao H, Pan Z Y, Chen Z L et al. Stable output of 20 kW high beam quality laser based on self-developed optical fiber and device[J]. Chinese Journal of Lasers, 49, 1616002(2022).
[7] Shi J H, Du T Y, Ma G M et al. All-domestic industrial fiber laser realizes stable output of 22.07 kW single fiber power[J]. Chinese Journal of Lasers, 49, 2416003(2022).
[8] Shcherbakov E A, Fomin V V, Abramov A A et al. Industrial grade 100 kW power CW fiber laser[C], ATh4A.2(2013).
[9] Minelly J, Laming R, Townsend J et al. High-gain fibre power amplifier tandem-pumped by a 3 W multi-stripe diode[C], TuG2(1992).
[10] Zhu J J, Zhou P, Ma Y X et al. Power scaling analysis of tandem-pumped Yb-doped fiber lasers and amplifiers[J]. Optics Express, 19, 18645-18654(2011).
[11] Stiles M. New developments in IPG fiber laser technology[C](2009).
[12] Xiao H, Leng J Y, Zhang H W et al. High-power 1018 nm ytterbium-doped fiber laser and its application in tandem pump[J]. Applied Optics, 54, 8166-8169(2015).
[13] Popp A, Voss A, Graf T et al. Thin-disk laser-pumping of ytterbium-doped fiber laser[J]. Laser Physics Letters, 8, 887-894(2011).
[14] Wirth C, Schmidt O, Kliner A et al. High-power tandem pumped fiber amplifier with an output power of 2.9 kW[J]. Optics Letters, 36, 3061-3063(2011).
[15] Ma P F, Xiao H, Meng D R et al. High power all-fiberized and narrow-bandwidth MOPA system by tandem pumping strategy for thermally induced mode instability suppression[J]. High Power Laser Science and Engineering, 6, e57(2018).
[16] Gu G C, Liu Z Y, Kong F T et al. Highly efficient ytterbium-doped phosphosilicate fiber lasers operating below 1020 nm[J]. Optics Express, 23, 17693-17700(2015).
[17] Kong F T, Gu G C, Hawkins T W et al. Efficient 240 W single-mode 1018 nm laser from an Ytterbium-doped 50/400 µm all-solid photonic bandgap fiber[J]. Optics Express, 26, 3138-3144(2018).
[18] Seah C P, Lim W Y W, Chua S L. A 4 kW fiber amplifier with good beam quality employing confined-doped gain fiber[C], AM2A.2(2018).
[19] Lim K J, Seah S K W, Ye J Y E et al. High absorption large-mode area step-index fiber for tandem-pumped high-brightness high-power lasers[J]. Photonics Research, 8, 1599-1064(2020).
[20] Xiao H, Leng J Y, Zhou P et al. High power tandem-pumped Yb-doped fiber laser[J]. Chinese Journal of Lasers, 44, 0201007(2017).
[21] Zhou P, Leng J Y, Xiao H et al. High average power fiber lasers: research progress and future prospect[J]. Chinese Journal of Lasers, 48, 2000001(2021).
[22] Xiao Q R, Tian J D, Li D et al. Tandem-pumped high-power ytterbium-doped fiber lasers: progress and opportunities[J]. Chinese Journal of Lasers, 48, 1501004(2021).
[23] Gao C, Dai J Y, Li F Y et al. Homemade 10-kW ytterbium-doped aluminophosphosilicate fiber for tandem pumping[J]. Chinese Journal of Lasers, 47, 0315001(2020).
[24] Dai J Y, Liu N, Li F Y et al. The (1+1) type pump gain integrated fiber realizes the output of 10,000-watt laser pumped by the same band[J]. Chinese Journal of Lasers, 48, 1816001(2021).
[25] Gao C, Liu N, Li F Y et al. 17.4 kW (1+1) long distance side-pumped laser fiber[J]. High Power Laser and Particle Beams, 34, 051002(2022).
[26] Zhang L, Lou F G, Wang M et al. Yb-doped triple-clad fiber for nearly 10 kW level tandem-pumped output[J]. Chinese Journal of Lasers, 48, 1315001(2021).
[27] Kurkov A S. Oscillation spectral range of Yb-doped fiber lasers[J]. Laser Physics Letters, 4, 93-102(2007).
[28] Kalyoncu S K, Yeniay A. High brightness 1018 nm monolithic fiber laser with power scaling to >500 W[J]. Applied Optics, 59, 4763-4767(2020).
[29] Xiao H, Zhou P, Wang X L et al. High power 1018 nm ytterbium doped fiber laser with an output power of 309 W[J]. Laser Physics Letters, 10, 065102(2013).
[30] Midilli Y, Efunbajo O B, Şimşek B et al. 1018 nm Yb-doped high-power fiber laser pumped by broadband pump sources around 915 nm with output power above 100 W[J]. Applied Optics, 56, 7225-7229(2017).
[31] Yan P, Wang X J, Wang Z H et al. A 1150-W 1018-nm fiber laser bidirectional pumped by wavelength-stabilized laser diodes[J]. IEEE Journal of Selected Topics in Quantum Electronics, 24, 0902506(2018).
[32] Tian J D, Xiao Q R, Li D et al. Suppressing the amplified spontaneous emission in the high-power 1018-nm monolithic fiber laser by decreasing the feedback from the inner reflections[J]. Journal of the Optical Society of America B, 37, 2514-2522(2020).
[33] Platonov N, Shkurikhin O, Fomin V et al. High-efficient kW-level single-mode ytterbium fiber lasers in all-fiber format with diffraction-limited beam at wavelengths in 1000-1030 nm spectral range[J]. Proceeding of SPIE, 11260, 1126003(2020).
[34] Gu Y R, Leng J Y, Xiao H et al. 5 kW all-fiber 1018 nm laser combining[J]. High Power Laser and Particle Beams, 29, 120101(2017).
[35] Xiao H. Study on Yb-doped fiber laser cascade pumping technology[D](2012).
[36] Chen X, Yao T F, Huang L J et al. Functional fibers and functional fiber-based components for high-power lasers[J]. Advanced Fiber Materials, 5, 59-106(2023).
[37] Xiao H, Leng J Y, Zhang H W et al. High-power 1018 nm ytterbium-doped fiber laser and its application in tandem pump[J]. Applied Optics, 54, 8166-8169(2015).
[38] Tao R M, Xiao H, Zhang H W et al. Dynamic characteristics of stimulated Raman scattering in high power fiber amplifiers in the presence of mode instabilities[J]. Optics Express, 26, 25098-25110(2018).
[39] Wang Z H, Yu W L, Tian J D et al. 5.1 kW tandem-pumped fiber amplifier seeded by random fiber laser with high suppression of stimulated Raman scattering[J]. IEEE Journal of Quantum Electronics, 57, 6800109(2021).
[40] Mete B, Yeniay A, Ecevit N et al. High brightness in-band pumped fiber MOPA with output power scaling to >4.6 kW[J]. Applied Optics, 61, 10121-10125(2022).
[41] Li M J, Chen X, Liu A P et al. Limit of effective area for single-mode operation in step-index large mode area laser fibers[J]. Journal of Lightwave Technology, 27, 3010-3016(2009).
[42] Kong L C, Leng J Y, Zhou P et al. Thermally induced mode loss evolution in the coiled ytterbium doped large mode area fiber[J]. Optics Express, 25, 23437-23450(2017).
[43] Yang B L, Wang P, Zhang H W et al. 6 kW single mode monolithic fiber laser enabled by effective mitigation of the transverse mode instability[J]. Optics Express, 29, 26366-26374(2021).
[44] Huang Z M, Shu Q, Tao R M et al. >5 kW record high power narrow linewidth laser from traditional step-index monolithic fiber amplifier[J]. IEEE Photonics Technology Letters, 33, 1181-1184(2021).
[45] Theeg T, Sayinc H, Neumann J et al. All-fiber counter-propagation pumped single frequency amplifier stage with 300-W output power[J]. IEEE Photonics Technology Letters, 24, 1864-1867(2012).
[46] Wang Y. Stimulated Raman scattering in high-power double-clad fiber lasers and power amplifiers[J]. Optical Engineering, 44, 114202(2005).
[47] Shi C, Su R T, Zhang H W et al. Experimental study of output characteristics of bi-directional pumping high power fiber amplifier in different pumping schemes[J]. IEEE Photonics Journal, 9, 1502910(2017).
[50] Glick Y, Sintov Y, Zuitlin R et al. Single-mode 230 W output power 1018 nm fiber laser and ASE competition suppression[J]. Journal of the Optical Society of America B, 33, 1392-1398(2016).
[51] Li R X, Wu H S, Xiao H et al. More than 5 kW counter tandem pumped fiber amplifier with near single-mode beam quality[J]. Optics & Laser Technology, 153, 108204(2022).
[52] Li R X, Wu H S, Xiao H et al. More than 6 kW near single-mode fiber amplifier based on a bidirectional tandem pumping scheme[J]. Applied Optics, 61, 6804-6810(2022).
[53] Li R X, Wu H S, Xiao H et al. Backward band pumped fiber laser realizes high beam quality output greater than 8 kW[J]. Acta Optica Sinica, 42, 1436001(2022).
[54] Xiao H, Li R X, Chen Z L et al. Backward cascade pumped 10 kW high beam quality fiber laser[J]. Acta Optica Sinica, 42, 2336001(2022).
[55] Wu H S. Research on the key techniques of high power confined-doped fiber laser[D](2022).
[56] Mashiko Y, Nguyen H K, Kashiwagi M et al. 2 kW single-mode fiber laser with 20-m long delivery fiber and high SRS suppression[J]. Proceedings of SPIE, 9728, 972805(2016).
[57] Ikoma S, Nguyen H K, Kashiwagi M et al. 3 kW single stage all-fiber Yb-doped single-mode fiber laser for highly reflective and highly thermal conductive materials processing[J]. Proceedings of SPIE, 10083, 100830Y(2017).
[58] Liao L, Zhang F F, He X L et al. Confined-doped fiber for effective mode control fabricated by MCVD process[J]. Applied Optics, 57, 3244-3249(2018).
[59] Zhang F F, Wang Y B, Lin X F et al. Gain-tailored Yb/Ce codoped aluminosilicate fiber for laser stability improvement at high output power[J]. Optics Express, 27, 20824-20836(2019).
[60] Wang B, Pang L, Liu J. Single mode 2.4 kW part-doped ytterbium fiber fabricated by modified chemical vapor deposition technique[J]. Proceedings of SPIE, 11427, 114271X(2020).
[61] Huang Z M, Shu Q A, Luo Y et al. 3.5 kW narrow-linewidth monolithic fiber amplifier at 1064 nm by employing a confined doping fiber[J]. Journal of the Optical Society of America B, 38, 2945-2952(2021).
[62] Wu H S, Li R X, Xiao H et al. High-power tandem-pumped fiber amplifier with beam quality maintenance enabled by the confined-doped fiber[J]. Optics Express, 29, 31337-31347(2021).
[63] Wu H S, An Y, Xiao H et al. Realization of 7 kW laser output with high beam quality by domestic partially doped fiber[J]. Chinese Journal of Lasers, 48, 2416002(2021).
[64] Wu H S, Li R X, Xiao H et al. Two-way cascade pumping partially doped fiber to achieve high beam quality laser output of nearly 8 kW[J]. Chinese Journal of Lasers, 49, 0716002(2022).
[65] Huang L J, Wu H S, Li R X et al. Domestic partially doped fiber for 10 kW high beam quality laser output[J]. High Power Laser and Particle Beams, 34, 111002(2022).
[66] Wang X L, Wen Y J, Zhang H W et al. Ytterbium-doped core-diameter-variable fiber laser: current situation and develop tendency[J]. Chinese Journal of Lasers, 49, 2100001(2022).
[67] Shi C. Study on high power long tapered Yb-doped fiber amplifier[D](2017).
[68] Ye Y. Research on high power fiber laser based on ytterbium-doped fiber with variable core diameter[D](2022).
[69] Filippov V, Chamorovskii Y, Kerttula J et al. Single-mode 212 W tapered fiber laser pumped by a low-brightness source[J]. Optics Letters, 33, 1416-1418(2008).
[70] Filippov V, Chamorovskii Y, Kerttula J et al. 600 W power scalable single transverse mode tapered double-clad fiber laser[J]. Optics Express, 17, 1203-1214(2009).
[71] Filippov V, Kerttula J, Chamorovskii Y et al. Highly efficient 750 W tapered double-clad ytterbium fiber laser[J]. Optics Express, 18, 12499-12512(2010).
[72] Roy V, Paré C, Labranche B et al. Yb-doped large mode area tapered fiber with depressed cladding and dopant confinement[J]. Proceedings of SPIE, 10083, 1008314(2017).
[73] Shi C, Zhang H W, Wang X L et al. kW-class high power fiber laser enabled by active long tapered fiber[J]. High Power Laser Science and Engineering, 6, e16(2018).
[74] Huang L, Zhou Z C, Shi C et al. Towards tapered-fiber-based all-fiberized high power narrow linewidth fiber laser[J]. Science China Technological Sciences, 61, 971-981(2018).
[75] Fedotov A, Noronen T, Gumenyuk R et al. Ultra-large core birefringent Yb-doped tapered double clad fiber for high power amplifiers[J]. Optics Express, 26, 6581-6592(2018).
[76] Yang B L, Zhang H W, Shi C et al. High power monolithic tapered ytterbium-doped fiber laser oscillator[J]. Optics Express, 27, 7585-7592(2019).
[77] Ye Y, Xi X M, Shi C et al. Comparative study on transverse mode instability of fiber amplifiers based on long tapered fiber and conventional uniform fiber[J]. Laser Physics Letters, 16, 085109(2019).
[78] Lai W C, Ma P F, Liu W et al. 550 W single frequency fiber amplifiers emitting at 1030 nm based on a tapered Yb-doped fiber[J]. Optics Express, 28, 20908-20919(2020).
[79] Li Y W, Gao C, Liu N A et al. Fabrication and properties of domestic long tapered ytterbium-doped fiber with high tapering ratio[J]. Proceedings of SPIE, 12169, 1216999(2022).
[80] Li W, Ma P F, Chen Y S et al. 694 W sub-GHz polarization-maintained tapered fiber amplifier based on spectral and pump wavelength optimization[J]. Optics Express, 30, 26875-26885(2022).
[81] Ye Y, Lin X F, Yang B L et al. Tapered Yb-doped fiber enabled a 4 kW near-single-mode monolithic fiber amplifier[J]. Optics Letters, 47, 2162-2165(2022).
[82] Ye Y, Xi X M, Yang B L et al. Backward pumping long tapered Yb-doped fiber to realize 6 kW laser output[J]. Infrared and Laser Engineering, 51, 20220596(2022).
[83] Ustimchik V, Chamorovskii Y, Filippov V. High average power (500 W/50 ps) and high peak power (3.2 MW/50 ps) picosecond pulsed MOPA system with tapered double-clad ytterbium fiber[J]. Proceedings of SPIE, 11981, 119810T(2022).
[84] Xi X M, Yang B L, Zhang H W et al. 20 kW monolithic fiber amplifier directly pumped by LDs[J]. High Power Laser and Particle Beams, 35, 021001(2023).
[85] Dong L A, Ballato J, Kolis J. Power scaling limits of diffraction-limited fiber amplifiers considering transverse mode instability[J]. Optics Express, 31, 6690-6703(2023).
[86] Tao R M. Study on thermal mode instability of high power narrow linewidth near diffraction limit fiber laser amplifier[D](2015).
[87] Wang X L, Wang P, Wu H S et al. Design, simulation and implementation of direct LD pumped high-brightness fiber laser[J]. Infrared and Laser Engineering, 52, 20230242(2023).
[88] Yang B L, Yang H, Wang P et al. LD pumped fiber laser based on self-developed fiber realizes 10 kW output[J]. Chinese Journal of Lasers, 49, 2016001(2022).
[89] Wu H S, Li H B, An Y et al. Transverse mode instability mitigation in a high-power confined-doped fiber amplifier with good beam quality through seed laser control[J]. High Power Laser Science and Engineering, 10, e44(2022).
[90] Li R X, Li H B, Wu H S et al. Mitigation of TMI in an 8 kW tandem pumped fiber amplifier enabled by inter-mode gain competition mechanism through bending control[J]. Optics Express, 31, 24423-24436(2023).
[91] Jain D, Baskiotis C, Sahu J K. Mode area scaling with multi-trench rod-type fibers[J]. Optics Express, 21, 1448-1455(2013).
[92] Jain D, Jung Y, Kim J et al. Mitigation of TMI in an 8 kW tandem pumped fiber amplifier enabled by inter-mode gain competition mechanism through bending control[J]. Optics Express, 31, 24423-24436(2023).
[93] Huang L J. Mode decomposition and mode control of high power fiber laser[D](2016).
[94] McComb T S, McCal D, Farrow R et al. High-peak power, flexible-pulse parameter, chirally coupled core (3C) fiber-based picosecond MOPA systems[J]. Proceedings of SPIE, 8961, 896112(2014).
[95] Kanskar M, Zhang J, Koponen J et al. Narrowband transverse-modal-instability (TMI)-free Yb-doped fiber amplifiers for directed energy applications[J]. Proceedings of SPIE, 10512, 105120F(2018).
[96] Khitrov V, Minelly J D, Tumminelli R et al. 3 kW single-mode direct diode-pumped fiber laser[J]. Proceedings of SPIE, 8901, 89016V(2014).
[97] Xu W B, Lin Z Q, Wang M et al. 50 μm core diameter Yb3+/Al3+/F– codoped silica fiber with M2<1.1 beam quality[J]. Optics Letters, 41, 504-507(2016).
[98] Beier F, Hupel C, Kuhn S et al. Single mode 4.3 kW output power from a diode-pumped Yb-doped fiber amplifier[J]. Optics Express, 25, 14892-14899(2017).
[99] Zeng L F, Xi X M, Ye Y et al. Near-single-mode 3 kW monolithic fiber oscillator based on a longitudinally spindle-shaped Yb-doped fiber[J]. Optics Letters, 45, 5792-5795(2020).
[100] Zeng L F, Pan Z Y, Xi X M et al. 5 kW monolithic fiber amplifier employing homemade spindle-shaped ytterbium-doped fiber[J]. Optics Letters, 46, 1393-1396(2021).
[101] Zhang Z L, Lin X F, Zhang X et al. Low-numerical aperture confined-doped long-tapered Yb-doped silica fiber for a single-mode high-power fiber amplifier[J]. Optics Express, 30, 32333-32346(2022).
[102] Ye Y, Lin X F, Xi X M et al. Novel constant-cladding tapered-core ytterbium-doped fiber for high-power fiber laser oscillator[J]. High Power Laser Science and Engineering, 9, e21(2021).
[103] Ye Y, Lin X F, Xi X M et al. Demonstration of constant-cladding tapered-core Yb-doped fiber for mitigating thermally-induced mode instability in high-power monolithic fiber amplifiers[J]. Optics Express, 30, 24936-24947(2022).
[104] Nicholson J W, Pincha J, Kansal I et al. 5 kW single-mode output power from Yb-doped fibers with increased higher-order mode loss[J]. Proceedings of SPIE, 12400, 1240002(2023).
[105] Kouznetsov D, Moloney J V. Efficiency of pump absorption in double-clad fiber amplifiers Ⅱ:broken circular symmetry[J]. Journal of the Optical Society of America B, 19, 1259-1263(2002).
[106] Philippe L, Doya V, Philippe R et al. Experimental study of pump power absorption along rare-earth-doped double clad optical fibres[J]. Optics Communications, 218, 249-254(2003).
[107] Koška P, Peterka P, Aubrecht J et al. Enhanced pump absorption efficiency in coiled and twisted double-clad thulium-doped fibers[J]. Optics Express, 24, 102-107(2016).
[108] Liu R, Yan D P, Chen M et al. Enhanced cladding pump absorption of ytterbium-doped double cladding fiber with internally modified cladding structures[J]. Optical Materials Express, 10, 36-45(2019).
Get Citation
Copy Citation Text
Hu Xiao, Ruixian Li, Hanshuo Wu, Liangjin Huang, Zilun Chen, Huan Yang, Zhiping Yan, Meng Wang, Zhiyong Pan, Zefeng Wang, Pu Zhou, Jinbao Chen. Research Progress in Tandem-Pumped High-Power and High-Beam Quality Ytterbium-Doped Fiber Laser[J]. Acta Optica Sinica, 2023, 43(17): 1714009
Category: Lasers and Laser Optics
Received: May. 16, 2023
Accepted: Jul. 22, 2023
Published Online: Sep. 22, 2023
The Author Email: Wang Zefeng (zefengwang_nudt@163.com), Zhou Pu (zhoupu203@163.com), Chen Jinbao (kdchenjinbao@aliyun.com)