Laser & Optoelectronics Progress, Volume. 60, Issue 23, 2325001(2023)
Properties of Surface Plasmon Coupling Based on Far-Field Spectroscopy
[1] Chong N S, Donthula K, Davies R A et al. Significance of chemical enhancement effects in surface-enhanced Raman scattering (SERS) signals of aniline and aminobiphenyl isomers[J]. Vibrational Spectroscopy, 81, 22-31(2015).
[2] Fateixa S, Daniel-da-Silva A L, Nogueira H I S et al. Raman signal enhancement dependence on the gel strength of Ag/hydrogels used as SERS substrates[J]. The Journal of Physical Chemistry C, 118, 10384-10392(2014).
[3] Zhang W, Xu J, Ye W et al. High-performance AlGaN metal-semiconductor-metal solar-blind ultraviolet photodetectors by localized surface plasmon enhancement[J]. Applied Physics Letters, 106, 021112(2015).
[4] Beck F J, Polman A, Catchpole K R. Tunable light trapping for solar cells using localized surface plasmons[J]. Journal of Applied Physics, 105, 114310(2009).
[5] Ihara M, Ikenouchi S, Taniguchi K et al. Photoabsorption-enhanced dye-sensitized solar cells using localized surface plasmon of gold nanoparticles with 16-mercapto hexadecanoic acid[C], 881-885(2011).
[6] Lee K L, Hsu H Y, You M L et al. Highly sensitive aluminum-based biosensors using tailorable Fano resonances in capped nanostructures[J]. Scientific Reports, 7, 44104(2017).
[7] Bi N, Hu M H, Zhu H Y et al. Determination of 6-thioguanine based on localized surface plasmon resonance of gold nanoparticle[J]. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 107, 24-30(2013).
[8] Thioune N, Lidgi-Guigui N, Cottat M et al. Study of gold nanorods-protein interaction by localized surface plasmon resonance spectroscopy[J]. Gold Bulletin, 46, 275-281(2013).
[9] Bezares F J, Caldwell J D, Glembocki O et al. The role of propagating and localized surface plasmons for SERS enhancement in periodic nanostructures[J]. Plasmonics, 7, 143-150(2012).
[10] Kaneta A, Fujimoto R, Hashimoto T et al. Instrumentation for dual-probe scanning near-field optical microscopy[J]. Review of Scientific Instruments, 83, 083709(2012).
[11] Vasconcelos T L, Archanjo B S, Fragneaud B et al. Tuning localized surface plasmon resonance in scanning near-field optical microscopy probes[J]. ACS Nano, 9, 6297-6304(2015).
[12] Zhu Q F, Li P G, Gao N et al. Deducing localized surface plasmon properties through analysis of the far-field optical spectra[J]. Journal of Physics D: Applied Physics, 55, 015108(2022).
[13] Sun Q C, Ding Y C, Goodman S M et al. Copper plasmonics and catalysis: role of electron-phonon interactions in dephasing localized surface plasmons[J]. Nanoscale, 6, 12450-12457(2014).
[14] Ellens A, Andres H, ter Heerdt M L H et al. Spectral-line-broadening study of the trivalent lanthanide-ion series.II. The variation of the electron-phonon coupling strength through the series[J]. Physical Review B, 55, 180-186(1997).
[15] Zhang H J, Huang K, Gao N et al. The preparation and optical properties of Au nanoparticles on different substrates[J]. Journal of Xiamen University (Natural Science), 52, 316-320(2013).
[16] Zhou Y. The controllable preparation and properties of silver nanoparticles[D], 316-320(2018).
[17] Wang H. Investigation of Fano interference between the localize surface plasmon scattering and the interface reflection[D], 37-42(2018).
Get Citation
Copy Citation Text
Baiyi Chen, Qifen Zhu, Na Gao, Penggang Li, Kai Huang, Yaping Wu, Junyong Kang. Properties of Surface Plasmon Coupling Based on Far-Field Spectroscopy[J]. Laser & Optoelectronics Progress, 2023, 60(23): 2325001
Category: OPTOELECTRONICS
Received: Nov. 1, 2022
Accepted: Dec. 14, 2022
Published Online: Dec. 11, 2023
The Author Email: Gao Na (ngao@xmu.edu.cn)