Laser & Optoelectronics Progress, Volume. 60, Issue 23, 2300008(2023)

Overview of Key Devices in Strong Coupling Communication Systems with Few-Mode Fibers

Sicong Xu, Wen Zhou, and Jianjun Yu*
Author Affiliations
  • Key Laboratory for Information Science of Electromagnetic Waves, Ministry of Education, Fudan University, Shanghai 200433, China
  • show less
    References(71)

    [1] Du J B, Shen W H, Liu J C et al. Mode division multiplexing: from photonic integration to optical fiber transmission[J]. Chinese Optics Letters, 19, 091301(2021).

    [2] Li C, Zhao J, Wang W et al. 4 × 100 Gbit/s long-distance quasi-single-mode bi-directional transmission with few-mode fiber[J]. Chinese Journal of Lasers, 44, 0206001(2017).

    [3] Mori T, Sakamoto T, Wada M et al. Few-mode fibers supporting more than two LP modes for mode-division-multiplexed transmission with MIMO DSP[J]. Journal of Lightwave Technology, 32, 2468-2479(2014).

    [4] Anisimov P S, Tsyplakov E D, Zemlyakov V V et al. Speckle backpropagation for compensation of nonlinear effects in few-mode optical fibers[J]. Chinese Optics Letters, 21, 030601(2023).

    [5] Sillard P, Bigot-Astruc M, Molin D. Few-mode fibers for mode-division-multiplexed systems[J]. Journal of Lightwave Technology, 32, 2824-2829(2014).

    [6] Chen H, Zhuang Y. Research progress on key technologies in mode division multiplexing system[J]. Journal of Nanjing University of Posts & Telecommunications, 38, 37-44(2018).

    [7] Ge D, Zuo M, Zhu J et al. Analysis and measurement of intra-LP-mode dispersion for weakly-coupled FMF[J]. Journal of Lightwave Technology, 39, 7238-7245(2021).

    [8] Fu S N, Yu D W. Mode division multiplexing transmission over few-mode fiber[J]. Science & Technology Review, 34, 62-68(2016).

    [9] Berdagué S, Facq P. Mode division multiplexing in optical fibers[J]. Applied Optics, 21, 1950-1955(1982).

    [10] Chen H M, Zhuang Y Y. Research progress on key technologies in mode division multiplexing system[J]. Journal of Nanjing University of Posts and Telecommunications (Natural Science Edition), 38, 37-44(2018).

    [11] Yang H, Chen Z L, Liu W G et al. Recent progress in photonic lantern[J]. Laser & Optoelectronics Progress, 55, 120002(2018).

    [12] Al Amin A, Li A, Chen S M et al. Dual-LP11 mode 4 × 4 MIMO-OFDM transmission over a two-mode fiber[J]. Optics Express, 19, 16672-16679(2011).

    [13] Zhang T, Li L, Hu G J. Demultiplexing of mode-division multiplexing system based on successive interference cancellation[J]. Chinese Journal of Lasers, 46, 0306001(2019).

    [14] Koebele C, Salsi M, Milord L et al. 40 km transmission of five mode division multiplexed data streams at 100 Gb/s with low MIMO-DSP complexity[C], Th.13.C.3(2011).

    [15] Koebele C, Salsi M, Sperti D et al. Two mode transmission at 2 × 100 Gb/s, over 40 km-long prototype few-mode fiber, using LCOS-based programmable mode multiplexer and demultiplexer[J]. Optics Express, 19, 16593-16600(2011).

    [16] Randel S, Ryf R, Sierra A et al. 6 × 56-Gb/s mode-division multiplexed transmission over 33-km few-mode fiber enabled by 6 × 6 MIMO equalization[J]. Optics Express, 19, 16697-16707(2011).

    [17] Labroille G, Jian P, Barré N et al. Mode selective 10-mode multiplexer based on multi-plane light conversion[C], Th3E.5(2017).

    [18] Lai J S, Tang R, Wu B B et al. Analysis on the research progress of space division multiplexing in optical fiber communication[J]. Telecommunications Science, 33, 118-135(2017).

    [19] Birks T A, Gris-Sánchez I, Yerolatsitis S et al. The photonic lantern[J]. Advances in Optics and Photonics, 7, 107-167(2015).

    [21] Chen H S, Fontaine N K, Ryf R et al. Design constraints of photonic-lantern spatial multiplexer based on laser-inscribed 3-D waveguide technology[J]. Journal of Lightwave Technology, 33, 1147-1154(2015).

    [22] van Weerdenburg J, Ryf R, Alvarado-Zacarias J C et al. 138 Tbit/s transmission over 650 km graded-index 6-mode fiber[C](2018).

    [23] Huang B, Xia C, Matz G et al. Structured directional coupler pair for multiplexing of degenerate modes[C], JW2A.25(2013).

    [24] Wang J, Xuan Y, Qi M H et al. Broadband and fabrication-tolerant on-chip scalable mode-division multiplexing based on mode-evolution counter-tapered couplers[J]. Optics Letters, 40, 1956-1959(2015).

    [25] Chang S H, Chung H S, Ryf R et al. Mode- and wavelength-division multiplexed transmission using all-fiber mode multiplexer based on mode selective couplers[J]. Optics Express, 23, 7164-7172(2015).

    [26] Kuo P C, Tong Y Y, Chow C W et al. 4.36 Tbit/s silicon chip-to-chip transmission via few-mode fiber (FMF) using 2D sub-wavelength grating couplers[C](2021).

    [27] Chang S H, Chung H S, Fontaine N K et al. Mode division multiplexed optical transmission enabled by all-fiber mode multiplexer[J]. Optics Express, 22, 14229-14236(2014).

    [28] Xu T, Gao T Y, Wang Y Z et al. High-gain integrated in-line few-mode amplifier enabling 3840-km long-haul transmission[J]. Photonics Research, 10, 2794-2801(2022).

    [29] Pei L, Li Z Q, Wang J S et al. Review on gain equalization technology of fiber amplifier using space division multiplexing[J]. Acta Optica Sinica, 41, 0106001(2021).

    [30] Liu Y P, Wang X T, Yang Z Q et al. Strongly coupled few-mode erbium-doped fiber amplifiers with ultralow differential modal gain[C](2020).

    [31] Ruan J R, Pei L, Zheng J J et al. Gain equalization of 4-mode erbium-doped fiber amplifier based on cladding pump[J]. Acta Optica Sinica, 42, 0406001(2022).

    [32] Wang W S, Ning T G, Pei L et al. Gain equalization of few-mode fiber amplifier based on genetic algorithm[J]. Acta Optica Sinica, 41, 0906001(2021).

    [33] Wakayama Y, Igarashi K, Soma D et al. Novel 6-mode fibre amplifier with large erbium-doped area for differential modal gain minimization[C](2016).

    [34] Bigot L, Trinel J B, Bouwmans G et al. Few-mode and multicore fiber amplifiers technology for SDM[C](2018).

    [35] Ryf R, Randel S, Gnauck A H et al. Space-division multiplexing over 10 km of three-mode fiber using coherent 6 × 6 MIMO processing[C], PDPB10(2011).

    [36] Sillard P. Next-generation fibers for space-division-multiplexed transmissions[J]. Journal of Lightwave Technology, 33, 1092-1099(2015).

    [37] Wang X, Zheng H J, Li X et al. Recent progresses on few mode fibers for mode-division multiplexing system[J]. Journal of Liaocheng University (Natural Science Edition), 32, 69-79(2019).

    [38] Sillard P, Bigot-Astruc M, Molin D. Few-mode fibers for mode-division-multiplexed systems[J]. Journal of Lightwave Technology, 32, 2824-2829(2014).

    [39] Sillard P, Molin D. A review of few-mode fibers for space-division multiplexed transmissions[C](2013).

    [40] Pei L, Wang J S, Zheng J J et al. Research on specialty and application of space-division-multiplexing fiber[J]. Infrared and Laser Engineering, 47, 1002001(2018).

    [41] Mori T, Sakamoto T, Wada M et al. Strongly coupled two-LP mode ring core fiber with low effective index difference[J]. Journal of Lightwave Technology, 35, 1936-1944(2017).

    [43] Ryf R, Fontaine N K, Guan B et al. 1705-km transmission over coupled-core fibre supporting 6 spatial modes[C](2014).

    [44] Chen H, Ryf R, Fontaine N K et al. High spectral efficiency mode-multiplexed transmission over 87-km 10-mode fiber[C], Th4C.2(2016).

    [46] Du J B, Zheng L F, Xu K et al. High speed and small footprint silicon micro-ring modulator assembly for space-division-multiplexed 100-Gbps optical interconnection[J]. Optics Express, 26, 13721-13729(2018).

    [47] Xiang T, Chen H M, Hu Y C. Silicon-based integrated device for electro-optic modulation assembly with mode-division multiplexing[J]. Chinese Journal of Lasers, 48, 1106001(2021).

    [48] Li Q, Chen H M. Electro-optic modulation and mode division multiplexing integrated device based on photonic crystal WM cavity and nanowire waveguide[J]. Optical Communication Technology, 46, 10-17(2022).

    [49] Li M X, Ling J W, He Y et al. LiNbO3 photonic crystal optical modulator[C], STu4J. 3(2020).

    [50] Abdelatty M Y, Badr M M, Swillam M A. Compact silicon electro-optical modulator using hybrid ITO tri-coupled waveguides[J]. Journal of Lightwave Technology, 36, 4198-4204(2018).

    [51] Terada Y, Tatebe T, Hinakura Y et al. Si photonic crystal slow-light modulators with periodic p-n junctions[J]. Journal of Lightwave Technology, 35, 1684-1692(2017).

    [52] Ooka Y, Tetsumoto T, Fushimi A et al. CMOS compatible high-Q photonic crystal nanocavity fabricated with photolithography on silicon photonic platform[J]. Scientific Reports, 5, 1-9(2015).

    [53] Ooka Y, Tetsumoto T, Daud N A B et al. Ultrasmall in-plane photonic crystal demultiplexers fabricated with photolithography[J]. Optics Express, 25, 1521-1528(2017).

    [54] Daud N A B, Ooka Y, Tabata T et al. Electro-optic modulator based on photolithography fabricated p-i-n integrated photonic crystal nanocavity[J]. IEICE Transactions on Electronics, E100.C, 670-674(2017).

    [55] Chen W W, Wang P J, Yang T J et al. Silicon three-mode (de)multiplexer based on cascaded asymmetric Y junctions[J]. Optics Letters, 41, 2851-2854(2016).

    [56] Qiu H Y, Yu H, Hu T et al. Silicon mode multi/demultiplexer based on multimode grating-assisted couplers[J]. Optics Express, 21, 17904-17911(2013).

    [57] Garcia-Rodriguez D, Corral J L, Griol A et al. Dimensional variation tolerant mode converter/multiplexer fabricated in SOI technology for two-mode transmission at 1550 nm[J]. Optics Letters, 42, 1221-1224(2017).

    [58] Minz M, Mishra D, Sonkar R K. Design of a hybrid mode and polarization division multiplexer[C](2020).

    [59] Ryf R, Randel S, Gnauck A H et al. Mode-division multiplexing over 96 km of few-mode fiber using coherent 6×6 MIMO processing[J]. Journal of Lightwave Technology, 30, 521-531(2012).

    [60] Randel S, Ryf R, Gnauck A H et al. Mode-multiplexed 6×20-GBd QPSK transmission over 1200-km DGD-compensated few-mode fiber[C], PDP5C.5(2012).

    [61] Wang Y Q, Chi N. Demonstration of high-speed 2 × 2 non-imaging MIMO Nyquist single carrier visible light communication with frequency domain equalization[J]. Journal of Lightwave Technology, 32, 2087-2093(2014).

    [62] Ryf R, Fontaine N K, Mestre M A et al. 12 × 12 MIMO transmission over 130-km few-mode fiber[C], FW6C.4(2012).

    [63] Ryf R, Randel S, Fontaine N K et al. 32-bit/s/Hz spectral efficiency WDM transmission over 177-km few-mode fiber[C], PDP5A.1(2013).

    [64] Ip E, Li M J, Bennett K et al. 146λ × 6 × 19-Gbaud wavelength and mode division multiplexed transmission over 10 × 50 km spans of few mode fiber with a gain equalized few mode EDFA[J]. Journal of Lightwave Technology, 32, 790-797(2014).

    [65] Chen Y, Lobato A, Jung Y et al. 41.6 Tbit/s C-band SDM OFDM transmission through 12 spatial and polarization modes over 74.17 km few mode fiber[J]. Journal of Lightwave Technology, 33, 1440-1444(2015).

    [66] Shibahara K, Lee D, Kobayashi T et al. Dense SDM (12-core - 3-mode) transmission over 527 km with 33.2-ns mode-dispersion employing low-complexity parallel MIMO frequency-domain equalization[J]. Journal of Lightwave Technology, 34, 196-204(2015).

    [67] Rademacher G, Ryf R, Fontaine N K et al. 3500-km mode-multiplexed transmission through a three-mode graded-index few-mode fiber link[C](2018).

    [68] van Weerdenburg J, Ryf R, Alvarado-Zacarias J C et al. 138-Tb/s mode- and wavelength-multiplexed transmission over six-mode graded-index fiber[J]. Journal of Lightwave Technology, 36, 1369-1374(2018).

    [69] Mizuno T, Shibahara K, Ono H et al. Long-distance PDM-32QAM 3-mode fibre transmission over 1000 km using hybrid multicore EDFA/Raman repeated amplification with cyclic mode permutation[C](2018).

    [70] Shibahara K, Mizuno T, Lee D et al. Iterative unreplicated parallel interference canceler for MDL-tolerant dense SDM (12-core × 3-mode) transmission over 3000 km[J]. Journal of Lightwave Technology, 37, 1560-1569(2019).

    [71] Shibahara K, Mizuno T, Lee D et al. DMD-unmanaged long-haul SDM transmission over 2500-km 12-core × 3-mode MC-FMF and 6300-km 3-mode FMF employing intermodal interference canceling technique[J]. Journal of Lightwave Technology, 37, 138-147(2019).

    [72] Shibahara K, Mizuno T, Kawakami H et al. Full C-band 3060-km DMD-unmanaged 3-mode transmission with 40.2-Tb/s capacity using cyclic mode permutation[J]. Journal of Lightwave Technology, 38, 514-521(2020).

    Tools

    Get Citation

    Copy Citation Text

    Sicong Xu, Wen Zhou, Jianjun Yu. Overview of Key Devices in Strong Coupling Communication Systems with Few-Mode Fibers[J]. Laser & Optoelectronics Progress, 2023, 60(23): 2300008

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Reviews

    Received: Nov. 21, 2022

    Accepted: Mar. 15, 2023

    Published Online: Dec. 4, 2023

    The Author Email: Yu Jianjun (jianjun@fudan.edu.cn)

    DOI:10.3788/LOP223112

    Topics