Laser & Optoelectronics Progress, Volume. 60, Issue 5, 0525001(2023)
Ultra-Short-Term Forecasting Method for Photovoltaic Power Based on Singular Spectrum Decomposition and Double Attention Mechanism
[1] Meng X L, Liu B, Duan C X et al. Optical transmission characteristic of novel trough type CPV/T concentrator[J]. Acta Optica Sinica, 41, 1522002(2021).
[2] Wang Z Z, Han M L, Hu H et al. Research on photovoltaic power prediction method based on sunny coefficient and multi-similarity matching[J]. Electrical Measurement & Instrumentation, 56, 45-50(2019).
[3] Nespoli A, Ogliari E, Leva S et al. Day-ahead photovoltaic forecasting: a comparison of the most effective techniques[J]. Energies, 12, 1621(2019).
[4] Zhang L Y, Meng L J, Wang Z Z. Photovoltaic power station output power prediction based on the double BP neural network[J]. Electrical Measurement & Instrumentation, 52, 31-35(2015).
[5] Qu J Q, Qian Z, Pei Y. Day-ahead hourly photovoltaic power forecasting using attention-based CNN-LSTM neural network embedded with multiple relevant and target variables prediction pattern[J]. Energy, 232, 120996(2021).
[6] Li C D, Zhou C G, Peng W et al. Accurate prediction of short-term photovoltaic power generation via a novel double-input-rule-modules stacked deep fuzzy method[J]. Energy, 212, 118700(2020).
[7] Mei F, Pan Y, Zhu K D et al. A hybrid online forecasting model for ultrashort-term photovoltaic power generation[J]. Sustainability, 10, 820(2018).
[8] Wang K J, Qi X X, Liu H D. A comparison of day-ahead photovoltaic power forecasting models based on deep learning neural network[J]. Applied Energy, 251, 113315(2019).
[9] Ma L, Huang W, Li K C et al. Photovoltaic ultra-short-term power prediction model based on Attention-LSTM[J]. Electrical Measurement & Instrumentation, 58, 146-152(2021).
[10] Sharadga H, Hajimirza S, Balog R S. Time series forecasting of solar power generation for large-scale photovoltaic plants[J]. Renewable Energy, 150, 797-807(2020).
[11] Sodsong N, Yu K M, Ouyang W. Short-term solar PV forecasting using gated recurrent unit with a cascade model[C], 292-297(2019).
[12] Liu J, Zheng W, Liu X. Photovoltaic short-term power prediction based on PSO-GRU model[J]. Frontiers in Science and Engineering, 1, 73-82(2021).
[13] Lee D H, Kim K. PV power prediction in a peak zone using recurrent neural networks in the absence of future meteorological information[J]. Renewable Energy, 173, 1098-1110(2021).
[14] Zhang F, Liu Q Y, Liu Y L et al. Novel fault location method for power systems based on attention mechanism and double structure GRU neural network[J]. IEEE Access, 8, 75237-75248(2020).
[15] Pan C, Tan J, Feng D D. Prediction intervals estimation of solar generation based on gated recurrent unit and kernel density estimation[J]. Neurocomputing, 453, 552-562(2021).
[16] Jin X B, Zheng W Z, Kong J L et al. Deep-learning forecasting method for electric power load via attention-based encoder-decoder with Bayesian optimization[J]. Energies, 14, 1596(2021).
[17] Jung S, Moon J, Park S et al. An attention-based multilayer GRU model for multistep-ahead short-term load forecasting[J]. Sensors, 21, 1639(2021).
[18] Zhou J G, Wang Q Q. Forecasting carbon price with secondary decomposition algorithm and optimized extreme learning machine[J]. Sustainability, 13, 8413(2021).
[19] Li Q, Zhang X Y, Ma T J et al. A multi-step ahead photovoltaic power prediction model based on similar day, enhanced colliding bodies optimization, variational mode decomposition, and deep extreme learning machine[J]. Energy, 224, 120094(2021).
[20] Li P T, Zhou K L, Lu X H et al. A hybrid deep learning model for short-term PV power forecasting[J]. Applied Energy, 259, 114216(2020).
[21] Yang L W, Gao X Q, Jiang J X et al. Short-term photovoltaic output power prediction based on wavelet transform and neural network[J]. Acta Energiae Solaris Sinica, 41, 152-157(2020).
[22] Yang J X, Zhang S, Liu J C et al. Short-term photovoltaic power prediction based on variational mode decomposition and long short term memory with dual-stage attention mechanism[J]. Automation of Electric Power Systems, 45, 174-182(2021).
[23] Liu H, Mi X W, Li Y F. Wind speed forecasting method based on deep learning strategy using empirical wavelet transform, long short term memory neural network and Elman neural network[J]. Energy Conversion and Management, 156, 498-514(2018).
[24] Jia P Y, Zhang H B, Liu X M et al. Short-term photovoltaic power forecasting based on VMD and ISSA-GRU[J]. IEEE Access, 9, 105939-105950(2021).
[25] Yan X A, Liu Y, Xu Y D et al. Multistep forecasting for diurnal wind speed based on hybrid deep learning model with improved singular spectrum decomposition[J]. Energy Conversion and Management, 225, 113456(2020).
[26] Bonizzi P, Karel J M H, Meste O et al. Singular spectrum decomposition: a new method for time series decomposition[J]. Advances in Adaptive Data Analysis, 6, 1450011(2014).
[27] Hu J, Shen L, Sun G. Squeeze-and-excitation networks[C], 7132-7141(2018).
Get Citation
Copy Citation Text
Xue Dong, Shengxiao Zhao, Yanyan Lu, Xiaofeng Chen, Yan Zhao, Lei Liu. Ultra-Short-Term Forecasting Method for Photovoltaic Power Based on Singular Spectrum Decomposition and Double Attention Mechanism[J]. Laser & Optoelectronics Progress, 2023, 60(5): 0525001
Category: OPTOELECTRONICS
Received: Dec. 24, 2021
Accepted: Feb. 25, 2022
Published Online: Mar. 6, 2023
The Author Email: Lei Liu (liulei13@ustc.edu.cn)