Laser & Optoelectronics Progress, Volume. 58, Issue 12, 1228001(2021)

Real-Time Detection of Small Obstacles Based on 16-Ray Lidar Point Cloud

Ying Han1, Jing Yuan1、*, Jiangsheng Si1, and Dehe Yang2
Author Affiliations
  • 1College of Information Engineering, Institute of Disaster Prevention, Langfang, Hebei 0 65201, China
  • 2National Institute of Natural Hazards, Ministry of Emergency Management of China, Beijing 100085, China
  • show less
    Figures & Tables(22)
    Scenery for railway detection
    Schematic of R-Fans-16 lidar.(a) Lidar model; (b) scanning angle
    R-Fans-16 coordinate system and schematic of parameters. (a) R-Fans-16 coordinate system;(b) schematic of angles
    Scanning point cloud map of scene
    Lidar fixed on angular displacement platform. (a) Angular displacement platform; (b) coordinate center of angular displacement platform; (c) platform and lidar
    Point cloud map of angular displacement platform rotated by 2°
    Scenery for lidar monitoring railway. (a) Front view; (b) left view; (c) top view
    Radar system with triangular base. (a) Perspective view; (b) front view; (c) left view; (d) top view
    Schematic of lidar rotation and coordinate transformation system. (a) Radar with added angular displacement platform; (b) lidar self-rotation and simultaneous rotation with angular system displacement platform; (c) coordinate transformation system
    Angle change during lidar scanning process. (a) Simulation of lidar scanning scene; (b) relationship between lidar self-rotation and lidar rotaion driven by angular displacement platform
    Point cloud map of angular displacement platform rotated by 14°
    Effects after deletion of duplicate data by different methods. (a) Direct deletion method; (b) mean method
    Flow chart of obstacle detection
    Pass-through filtering result
    3D region segmentation based on octree voxelization . (a) 3D representation of space;(b) octree hierarchical structure
    Schematic of point cloud difference treatment. (a) Background point cloud; (b) point cloud for real-time detection; (c) result after difference treatment
    Statistical filtering results under different conditions.(a) k=20,ε1=1; (b) k=5,ε1=0.1; (c) k=20,ε1=0.1
    Lidar measurement objects and point cloud map. (a) 3D lidar measurement scene; (b) point cloud map; (c) practical obstacle images
    Resutls of obstacle detection based on 16-ray point cloud. (a) Point cloud of real-time detection on right of lidar; (b) result after pass-through filtering; (c) result after difference treatment; (d) result after denoising;(e) marking result of obstacle on right; (f) marking result of obstacle on left
    Results of obstacle detection based on 1-ray point cloud. (a) Result after pass-through filtering; (b) result after difference treatment; (c) result after denoising; (d) marking result of obstacle on left; (f) marking result of obstacle on right
    16-ray point cloud for real-time detection of obstacle
    Comparison between 1-ray point cloud and 16-ray point cloud. (a) 1-line point cloud; (b) 16-line point cloud
    Tools

    Get Citation

    Copy Citation Text

    Ying Han, Jing Yuan, Jiangsheng Si, Dehe Yang. Real-Time Detection of Small Obstacles Based on 16-Ray Lidar Point Cloud[J]. Laser & Optoelectronics Progress, 2021, 58(12): 1228001

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Remote Sensing and Sensors

    Received: Sep. 24, 2020

    Accepted: Oct. 14, 2020

    Published Online: Jun. 23, 2021

    The Author Email: Jing Yuan (yuanjing20110824@sina.com)

    DOI:10.3788/LOP202158.1228001

    Topics