Photonics Research, Volume. 10, Issue 2, 601(2022)

Torsional optomechanical cooling of a nanofiber

Dianqiang Su1,2, Pablo Solano3, Jeffrey D. Wack4, Luis A. Orozco4, and Yanting Zhao1,2、*
Author Affiliations
  • 1State Key Laboratory of Quantum Optics and Quantum Optics Devices, Institute of Laser Spectroscopy, Shanxi University, Taiyuan 030006, China
  • 2Collaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan 030006, China
  • 3Departamento de Física, Facultad de Ciencias Físicas y Matemáticas, Universidad de Concepción, Concepción, Chile
  • 4Joint Quantum Institute, Department of Physics and NIST, University of Maryland, College Park, Maryland 20742, USA
  • show less
    References(41)

    [1] J. Chan, T. P. M. Alegre, A. H. Safavi-Naeini, J. T. Hill, A. Krause, S. Gröblacher, M. Aspelmeyer, O. Painter. Laser cooling of a nanomechanical oscillator into its quantum ground state. Nature, 478, 89-92(2011).

    [2] U. Delić, M. Reisenbauer, K. Dare, D. Grass, V. Vuletić, N. Kiesel, M. Aspelmeyer. Cooling of a levitated nanoparticle to the motional quantum ground state. Science, 367, 892-895(2020).

    [3] N. T. Otterstrom, R. O. Behunin, E. A. Kittlaus, P. T. Rakich. Optomechanical cooling in a continuous system. Phys. Rev. X, 8, 041034(2018).

    [4] H. He, M. E. J. Friese, N. R. Heckenberg, H. Rubinsztein-Dunlop. Direct observation of transfer of angular momentum to absorptive particles from a laser beam with a phase singularity. Phys. Rev. Lett., 75, 826-829(1995).

    [5] M. Bhattacharya, P. Meystre. Using a Laguerre-Gaussian beam to trap and cool the rotational motion of a mirror. Phys. Rev. Lett., 99, 153603(2007).

    [6] M. Bhattacharya. Rotational cavity optomechanics. J. Opt. Soc. Am. B, 32, B55-B60(2015).

    [7] M. E. J. Friese, T. A. Nieminen, N. R. Heckenberg, H. Rubinsztein-Dunlop. Optical alignment and spinning of laser-trapped microscopic particles. Nature, 394, 348-350(1998).

    [8] L. Tong, V. D. Miljković, M. Käll. Alignment, rotation, and spinning of single plasmonic nanoparticles and nanowires using polarization dependent optical forces. Nano Lett., 10, 268-273(2010).

    [9] Y. Arita, M. Mazilu, K. Dholakia. Laser-induced rotation and cooling of a trapped microgyroscope in vacuum. Nat. Commun., 4, 2374(2013).

    [10] L. He, H. Li, M. Li. Optomechanical measurement of photon spin angular momentum and optical torque in integrated photonic devices. Sci. Adv., 2, e1600485(2016).

    [11] H. Shi, M. Bhattacharya. Optomechanics based on angular momentum exchange between light and matter. J. Phys. B, 49, 153001(2016).

    [12] T. M. Hoang, Y. Ma, J. Ahn, J. Bang, F. Robicheaux, Z.-Q. Yin, T. Li. Torsional optomechanics of a levitated nonspherical nanoparticle. Phys. Rev. Lett., 117, 123604(2016).

    [13] S. Kuhn, A. Kosloff, B. A. Stickler, F. Patolsky, K. Hornberger, M. Arndt, J. Millen. Full rotational control of levitated silicon nanorods. Optica, 4, 356-360(2017).

    [14] S. Kuhn, B. A. Stickler, A. Kosloff, F. Patolsky, K. Hornberger, M. Arndt, J. Millen. Optically driven ultra-stable nanomechanical rotor. Nat. Commun., 8, 1670(2017).

    [15] R. Reimann, M. Doderer, E. Hebestreit, R. Diehl, M. Frimmer, D. Windey, F. Tebbenjohanns, L. Novotny. GHz rotation of an optically trapped nanoparticle in vacuum. Phys. Rev. Lett., 121, 033602(2018).

    [16] T. Delord, P. Huillery, L. Nicolas, G. Hétet. Spin-cooling of the motion of a trapped diamond. Nature, 580, 56-59(2020).

    [17] D. Pan, H. Xu, F. J. Garcia de Abajo. Rotational Doppler cooling and heating. Sci. Adv., 7, eabd6705(2021).

    [18] J. H. Poynting. The wave motion of a revolving shaft, and a suggestion as to the angular momentum in a beam of circularly polarised light. Proc. R. Soc. Lond. A, 82, 560-567(1909).

    [19] R. A. Beth. Direct detection of the angular momentum of light. Phys. Rev., 48, 471(1935).

    [20] R. A. Beth. Mechanical detection and measurement of the angular momentum of light. Phys. Rev., 50, 115-125(1936).

    [21] A. H. S. Holbourn. Angular momentum of circularly polarised light. Nature, 137, 31(1936).

    [22] J. Bang, T. Seberson, P. Ju, J. Ahn, Z. Xu, X. Gao, F. Robicheaux, T. Li. Five-dimensional cooling and nonlinear dynamics of an optically levitated nanodumbbell. Phys. Rev. Res., 2, 043054(2020).

    [23] E. F. Fenton, A. Khan, P. Solano, L. A. Orozco, F. K. Fatemi. Spin-optomechanical coupling between light and a nanofiber torsional mode. Opt. Lett., 43, 1534-1537(2018).

    [24] P. Solano, J. A. Grover, J. E. Hoffman, S. Ravets, F. K. Fatemi, L. A. Orozco, S. L. Rolston. Optical nanofibers: a new platform for quantum optics. Advances in Atomic Molecular and Optical Physics, 355-403(2017).

    [25] C. Wuttke. Thermal excitations of optical nanofibers measured with a cavity(2014).

    [26] D. Hümmer, P. Schneeweiss, A. Rauschenbeutel, O. Romero-Isart. Heating in nanophotonic traps for cold atoms. Phys. Rev. X, 9, 041034(2019).

    [27] C. Wuttke, G. D. Cole, A. Rauschenbeutel. Optically active mechanical modes of tapered optical fibers. Phys. Rev. A, 88, 061801(2013).

    [28] C. H. Metzger, K. Karrai. Cavity cooling of a microlever. Nature, 432, 1002-1005(2004).

    [29] P. R. Saulson. Thermal noise in mechanical experiments. Phys. Rev. D, 42, 2437-2445(1990).

    [30] J. E. Hoffman, S. Ravets, J. A. Grover, P. Solano, P. R. Kordell, J. D. Wong-Campos, L. A. Orozco, S. L. Rolston. Ultrahigh transmission optical nanofibers. AIP Adv., 4, 067124(2014).

    [31] S. Ravets, J. E. Hoffman, L. A. Orozco, S. L. Rolston, G. Beadie, F. K. Fatemi. A low-loss photonic silica nanofiber for higher-order modes. Opt. Express, 21, 18325-18335(2013).

    [32] M. Joos, A. Bramati, Q. Glorieux. Complete polarization control for a nanofiber waveguide using the scattering properties. Opt. Express, 27, 18818-18830(2019).

    [33] U. Kemiktarak, M. Durand, M. Metcalfe, J. Lawall. Cavity optomechanics with sub-wavelength grating mirrors. New J. Phys., 14, 125010(2012).

    [34] F. van der Laan, R. Reimann, A. Militaru, F. Tebbenjohanns, D. Windey, M. Frimmer, L. Novotny. Optically levitated rotor at its thermal limit of frequency stability. Phys. Rev. A, 102, 013505(2020).

    [35] C. Wuttke, A. Rauschenbeutel. Thermalization via heat radiation of an individual object thinner than the thermal wavelength. Phys. Rev. Lett., 111, 024301(2013).

    [36] E. F. Fenton, A. Khan, B. D. Patterson, P. Solano, S. L. Rolston, L. A. Orozco, F. K. Fatemi. Torsional modes of a nanofiber: polarimetric excitation and read out. Frontiers in Optics, FTu3I.6(2016).

    [37] M. Aspelmeyer, T. J. Kippenberg, F. Marquardt. Cavity optomechanics. Rev. Mod. Phys., 86, 1391-1452(2014).

    [38] P. Solano, F. K. Fatemi, L. A. Orozco, S. L. Rolston. Dynamics of trapped atoms around an optical nanofiber probed through polarimetry. Opt. Lett., 42, 2283-2286(2017).

    [39] P. H. Kim, B. D. Hauer, T. J. Clark, F. F. Sani, M. R. Freeman, J. P. Davis. Magnetic actuation and feedback cooling of a cavity optomechanical torque sensor. Nat. Commun., 8, 1355(2017).

    [40] B. A. Stickler, K. Hornberger, M. S. Kim. Quantum rotations of nanoparticles. Nat. Rev. Phys., 3, 589-597(2021).

    [41] S. Chakram, Y. S. Patil, L. Chang, M. Vengalattore. Dissipation in ultrahigh quality factor sin membrane resonators. Phys. Rev. Lett., 112, 127201(2014).

    Tools

    Get Citation

    Copy Citation Text

    Dianqiang Su, Pablo Solano, Jeffrey D. Wack, Luis A. Orozco, Yanting Zhao, "Torsional optomechanical cooling of a nanofiber," Photonics Res. 10, 601 (2022)

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Nonlinear Optics

    Received: Aug. 23, 2021

    Accepted: Jan. 4, 2022

    Published Online: Feb. 9, 2022

    The Author Email: Yanting Zhao (zhaoyt@sxu.edu.cn)

    DOI:10.1364/PRJ.440991

    Topics