Journal of Atmospheric and Environmental Optics, Volume. 19, Issue 1, 1(2024)
Application of vapor sorption analyzer in aerosol hygroscopicity studies
[1] Pöschl U. Atmospheric aerosols: Composition, transformation, climate and health effects[J]. Angewandte Chemie International Edition, 44, 7520-7540(2005).
[2] Tang M J, Cziczo D J, Grassian V H. Interactions of water with mineral dust aerosol: Water adsorption, hygroscopicity, cloud condensation, and ice nucleation[J]. Chemical Reviews, 116, 4205-4259(2016).
[3] Ramanathan V, Crutzen P J, Kiehl J T et al. Aerosols, climate, and the hydrological cycle[J]. Science, 294, 2119-2124(2001).
[4] Kaufman Y J, Tanré D, Boucher O. A satellite view of aerosols in the climate system[J]. Nature, 419, 215-223(2002).
[5] Zhou J C, Xu X Z, Zhao W X et al. Simultaneous measurements of the relative-humidity-dependent aerosol light extinction, scattering, absorption, and single-scattering albedo with a humidified cavity-enhanced albedometer[J]. Atmospheric Measurement Techniques, 13, 2623-2634(2020).
[6] Burgos M A, Andrews E, Titos G et al. A global view on the effect of water uptake on aerosol particle light scattering[J]. Scientific Data, 6, 157(2019).
[7] Zhao C S, Yu Y L, Kuang Y et al. Recent progress of aerosol light-scattering enhancement factor studies in China[J]. Advances in Atmospheric Sciences, 36, 1015-1026(2019).
[8] Titos G, Burgos M A, Zieger P et al. A global study of hygroscopicity-driven light-scattering enhancement in the context of other in situ aerosol optical properties[J]. Atmospheric Chemistry and Physics, 21, 13031-13050(2021).
[9] Peng C, Chen L, Tang M J. A database for deliquescence and efflorescence relative humidities of compounds with atmospheric relevance[J]. Fundamental Research, 2, 578-587(2022).
[10] Martin S T. Phase transitions of aqueous atmospheric particles[J]. Chemical Reviews, 100, 3403-3454(2000).
[11] Liu Y J, Zhu T, Zhao D F et al. Investigation of the hygroscopic properties of Ca(NO3)2 and internally mixed Ca(NO3)2/CaCO3 particles by micro-Raman spectrometry[J]. Atmospheric Chemistry and Physics, 8, 7205-7215(2008).
[12] Tang M J, Chan C K, Li Y J et al. A review of experimental techniques for aerosol hygroscopicity studies[J]. Atmospheric Chemistry and Physics, 19, 12631-12686(2019).
[13] Cheng Y F, Su H, Koop T et al. Size dependence of phase transitions in aerosol nanoparticles[J]. Nature Communications, 6, 5923(2015).
[14] Ma Q X, Liu Y C, He H. The utilization of physisorption analyzer for studying the hygroscopic properties of atmospheric relevant particles[J]. The Journal of Physical Chemistry A, 114, 4232-4237(2010).
[15] Gustafsson R J, Orlov A, Badger C L et al. A comprehensive evaluation of water uptake on atmospherically relevant mineral surfaces: DRIFT spectroscopy, thermogravimetric analysis and aerosol growth measurements[J]. Atmospheric Chemistry and Physics, 5, 3415-3421(2005).
[16] Gu W J, Li Y J, Zhu J X et al. Investigation of water adsorption and hygroscopicity of atmospherically relevant particles using a commercial vapor sorption analyzer[J]. Atmospheric Measurement Techniques, 10, 3821-3832(2017).
[17] Schuttlefield J D, Cox D, Grassian V H. An investigation of water uptake on clays minerals using ATR-FTIR spectroscopy coupled with quartz crystal microbalance measurements[J]. Journal of Geophysical Research: Atmospheres, 112, D21303(2007).
[18] Krueger B J, Ross J L, Grassian V H. Formation of microcrystals, micropuddles, and other spatial inhomogenieties in surface reactions under ambient conditions: An atomic force microscopy study of water and nitric acid adsorption on MgO(100) and CaCO3(101¯4)[J]. Langmuir, 21, 8793-8801(2005).
[19] Tong H J, Ouyang B, Nikolovski N et al. A new electrodynamic balance (EDB) design for low-temperature studies: Application to immersion freezing of pollen extract bioaerosols[J]. Atmospheric Measurement Techniques, 8, 1183-1195(2015).
[20] Hopkins R J, Mitchem L, Ward A D et al. Control and characterisation of a single aerosol droplet in a single-beam gradient-force optical trap[J]. Physical Chemistry Chemical Physics, 6, 4924-4927(2004).
[21] Ettner M, Mitra S K, Borrmann S. Heterogeneous freezing of single sulfuric acid solution droplets: Laboratory experiments utilizing an acoustic levitator[J]. Atmospheric Chemistry and Physics, 4, 1925-1932(2004).
[22] Zhang S J, Xu L, Guo X M et al. Influence of secondary organic coating on hygroscopicity of a sodium chloride core: Based on mircro-scale single particle analysis[J]. Environmental Science, 41, 2017-2025(2020).
[23] Swietlicki E, Hansson H C, Hämeri K et al. Hygroscopic properties of submicrometer atmospheric aerosol particles measured with H-TDMA instruments in various environments—A review[J]. Tellus B: Chemical and Physical Meteorology, 60, 432-469(2008).
[24] Chen L, Peng C, Gu W J et al. On mineral dust aerosol hygroscopicity[J]. Atmospheric Chemistry and Physics, 20, 13611-13626(2020).
[25] Tang M J, Zhang H H, Gu W J et al. Hygroscopic properties of saline mineral dust from different regions in China: Geographical variations, compositional dependence, and atmospheric implications[J]. Journal of Geophysical Research: Atmospheres, 124, 10844-10857(2019).
[26] Peng C, Gu W J, Li R et al. Large variations in hygroscopic properties of unconventional mineral dust[J]. ACS Earth and Space Chemistry, 4, 1823-1830(2020).
[27] Tang M J, Gu W J, Ma Q X et al. Water adsorption and hygroscopic growth of six anemophilous pollen species: The effect of temperature[J]. Atmospheric Chemistry and Physics, 19, 2247-2258(2019).
[28] Chen L, Chen Y Z, Chen L L et al. Hygroscopic properties of 11 pollen species in China[J]. ACS Earth and Space Chemistry, 3, 2678-2683(2019).
[29] Peng C, Razafindrambinina P N, Malek K A et al. Interactions of organosulfates with water vapor under sub- and supersaturated conditions[J]. Atmospheric Chemistry and Physics, 21, 7135-7148(2021).
[30] Sullivan R C, Moore M J K, Petters M D et al. Effect of chemical mixing state on the hygroscopicity and cloud nucleation properties of calcium mineral dust particles[J]. Atmospheric Chemistry and Physics, 9, 3303-3316(2009).
[31] Good N, Coe H, McFiggans G. Instrumentational operation and analytical methodology for the reconciliation of aerosol water uptake under sub- and supersaturated conditions[J]. Atmospheric Measurement Techniques, 3, 1241-1254(2010).
[32] Tang M J, Whitehead J, Davidson N M et al. Cloud condensation nucleation activities of calcium carbonate and its atmospheric ageing products[J]. Physical Chemistry Chemical Physics, 17, 32194-32203(2015).
[33] Greenspan L. Humidity fixed points of binary saturated aqueous solutions[J]. Journal of Research of the National Bureau of Standards Section A: Physics and Chemistry, 81A, 89-96(1977).
[34] Huneeus N, Schulz M, Balkanski Y et al. Global dust model intercomparison in AeroCom phase I[J]. Atmospheric Chemistry and Physics, 11, 7781-7816(2011).
[35] Ginoux P, Prospero J M, Gill T E et al. Global-scale attribution of anthropogenic and natural dust sources and their emission rates based on MODIS Deep Blue aerosol products[J]. Reviews of Geophysics, 50, RG3005(2012).
[36] Textor C, Schulz M, Guibert S et al. Analysis and quantification of the diversities of aerosol life cycles within AeroCom[J]. Atmospheric Chemistry and Physics, 6, 1777-1813(2006).
[37] Sokolik I N, Winker D M, Bergametti G et al. Introduction to special section: Outstanding problems in quantifying the radiative impacts of mineral dust[J]. Journal of Geophysical Research: Atmospheres, 106, 18015-18027(2001).
[38] Tegen I. Modeling the mineral dust aerosol cycle in the climate system[J]. Quaternary Science Reviews, 22, 1821-1834(2003).
[39] Bian H S, Zender C S. Mineral dust and global tropospheric chemistry: Relative roles of photolysis and heterogeneous uptake[J]. Journal of Geophysical Research: Atmospheres, 108, 4672(2003).
[40] Liao H, Adams P J, Chung S H et al. Interactions between tropospheric chemistry and aerosols in a unified general circulation model[J]. Journal of Geophysical Research: Atmospheres, 108, 4001(2003).
[41] Bauer S E, Balkanski Y, Schulz M et al. Global modeling of heterogeneous chemistry on mineral aerosol surfaces: Influence on tropospheric ozone chemistry and comparison to observations[J]. Journal of Geophysical Research: Atmospheres, 109, D02304(2004).
[42] Bauer S E, Koch D. Impact of heterogeneous sulfate formation at mineral dust surfaces on aerosol loads and radiative forcing in the Goddard Institute for Space Studies general circulation model[J]. Journal of Geophysical Research: Atmospheres, 110, D17202(2005).
[43] Knippertz P, Stuut J B W[M].
[44] Abuduwaili J, Gabchenko M V, Xu J R. Eolian transport of salts—A case study in the area of Lake Ebinur (Xinjiang, Northwest China)[J]. Journal of Arid Environments, 72, 1843-1852(2008).
[45] Wang X M, Hua T, Zhang C X et al. Aeolian salts in Gobi Deserts of the western region of Inner Mongolia: Gone with the dust aerosols[J]. Atmospheric Research, 118, 1-9(2012).
[46] Usher C R, Michel A E, Grassian V H. Reactions on mineral dust[J]. Chemical Reviews, 103, 4883-4940(2003).
[47] Krueger B J, Grassian V H, Laskin A et al. The transformation of solid atmospheric particles into liquid droplets through heterogeneous chemistry: Laboratory insights into the processing of calcium containing mineral dust aerosol in the troposphere[J]. Geophysical Research Letters, 30, 1148(2003).
[48] Zhao D F, Buchholz A, Mentel T F et al. Novel method of generation of Ca(HCO3)2 and CaCO3 aerosols and first determination of hygroscopic and cloud condensation nuclei activation properties[J]. Atmospheric Chemistry and Physics, 10, 8601-8616(2010).
[49] Guo L Y, Gu W J, Peng C et al. A comprehensive study of hygroscopic properties of calcium-and magnesium-containing salts: Implication for hygroscopicity of mineral dust and sea salt aerosols[J]. Atmospheric Chemistry and Physics, 19, 2115-2133(2019).
[50] Rubasinghege G, Grassian V H. Role(s) of adsorbed water in the surface chemistry of environmental interfaces[J]. Chemical Communications, 49, 3071-3094(2013).
[51] Tang M J, Schuster G, Crowley J N. Heterogeneous reaction of N2O5 with illite and Arizona test dust particles[J]. Atmospheric Chemistry and Physics, 14, 245-254(2014).
[52] Tang M J, Huang X, Lu K D et al. Heterogeneous reactions of mineral dust aerosol: Implications for tropospheric oxidation capacity[J]. Atmospheric Chemistry and Physics, 17, 11727-11777(2017).
[53] Wang T, Liu Y Y, Deng Y et al. Adsorption of SO2 on mineral dust particles influenced by atmospheric moisture[J]. Atmospheric Environment, 191, 153-161(2018).
[54] Jia X H, Gu W J, Peng C et al. Heterogeneous reaction of CaCO3 with NO2 at different relative humidities: Kinetics, mechanisms, and impacts on aerosol hygroscopicity[J]. Journal of Geophysical Research: Atmospheres, 126, e2021JD034826(2021).
[55] Zhang R, Jing J, Tao J et al. Chemical characterization and source apportionment of PM2.5 in Beijing: Seasonal perspective[J]. Atmospheric Chemistry and Physics, 13, 7053-7074(2013).
[56] Klimont Z, Kupiainen K, Heyes C et al. Global anthropogenic emissions of particulate matter including black carbon[J]. Atmospheric Chemistry and Physics, 17, 8681-8723(2017).
[57] Zheng B, Tong D, Li M et al. Trends in China's anthropogenic emissions since 2010 as the consequence of clean air actions[J]. Atmospheric Chemistry and Physics, 18, 14095-14111(2018).
[58] Chen S Y, Zhang X R, Lin J T et al. Fugitive road dust PM2.5 emissions and their potential health impacts[J]. Environmental Science & Technology, 53, 8455-8465(2019).
[59] Ojha K, Pradhan N C, Samanta A N. Zeolite from fly ash: Synthesis and characterization[J]. Bulletin of Materials Science, 27, 555-564(2004).
[60] Philip S, Martin R V, Snider G et al. Anthropogenic fugitive, combustion and industrial dust is a significant, underrepresented fine particulate matter source in global atmospheric models[J]. Environmental Research Letters, 12, 044018(2017).
[61] Umo N S, Wagner R, Ullrich R et al. Enhanced ice nucleation activity of coal fly ash aerosol particles initiated by ice-filled pores[J]. Atmospheric Chemistry and Physics, 19, 8783-8800(2019).
[62] Li W J, Xu L, Liu X H et al. Air pollution-aerosol interactions produce more bioavailable iron for ocean ecosystems[J]. Science Advances, 3, e1601749(2017).
[63] Kanakidou M, Myriokefalitakis S, Tsigaridis K. Aerosols in atmospheric chemistry and biogeochemical cycles of nutrients[J]. Environmental Research Letters, 13, 063004(2018).
[64] Kim D, Xiao Y, Karchere-Sun R et al. Atmospheric processing of anthropogenic combustion particles: Effects of acid media and solar flux on the iron mobility from fly ash[J]. ACS Earth and Space Chemistry, 4, 750-761(2020).
[65] Borcherding J A, Chen H H, Caraballo J C et al. Coal fly ash impairs airway antimicrobial peptides and increases bacterial growth[J]. PLoS One, 8, e57673(2013).
[66] Navea J G, Richmond E, Stortini T et al. Water adsorption isotherms on fly ash from several sources[J]. Langmuir, 33, 10161-10171(2017).
[67] Georgakopoulos D G, Després V, Fröhlich-Nowoisky J et al. Microbiology and atmospheric processes: Biological, physical and chemical characterization of aerosol particles[J]. Biogeosciences, 6, 721-737(2009).
[68] Morris C E, Sands D C, Bardin M et al. Microbiology and atmospheric processes: Research challenges concerning the impact of airborne micro-organisms on the atmosphere and climate[J]. Biogeosciences, 8, 17-25(2011).
[69] Zheng Y H, Li J, Chen H X et al. Bioaerosol research: Yesterday, today and tomorrow[J]. Chinese Science Bulletin, 63, 878-894(2018).
[70] Després V R, Alex Huffman J, Burrows S M et al. Primary biological aerosol particles in the atmosphere: A review[J]. Tellus B: Chemical and Physical Meteorology, 64, 15598(2012).
[71] Sofiev M, Siljamo P, Ranta H et al. Towards numerical forecasting of long-range air transport of birch pollen: Theoretical considerations and a feasibility study[J]. International Journal of Biometeorology, 50, 392-402(2006).
[72] D'Amato G, Spieksma F T M, Liccardi G et al. Pollen-related allergy in Europe[J]. Allergy, 53, 567-578(1998).
[73] Pummer B G, Bauer H, Bernardi J et al. Chemistry and morphology of dried-up pollen suspension residues[J]. Journal of Raman Spectroscopy, 44, 1654-1658(2013).
[74] Diehl K, Quick C, Matthias-Maser S et al. The ice nucleating ability of pollen: Part I: Laboratory studies in deposition and condensation freezing modes[J]. Atmospheric Research, 58, 75-87(2001).
[75] Pope F D. Pollen grains are efficient cloud condensation nuclei[J]. Environmental Research Letters, 5, 044015(2010).
[76] Fang Y M, Ma C M, Bunting M J et al. Airborne pollen concentration in Nanjing, Eastern China, and its relationship with meteorological factors[J]. Journal of Geophysical Research: Atmospheres, 123, 10842-10856(2018).
[77] Rahman A, Luo C X, Khan M H R et al. Influence of atmospheric PM2.5, PM10, O3, CO, NO2, SO2, and meteorological factors on the concentration of airborne pollen in Guangzhou, China[J]. Atmospheric Environment, 212, 290-304(2019).
[78] Hallquist M, Wenger J C, Baltensperger U et al. The formation, properties and impact of secondary organic aerosol: Current and emerging issues[J]. Atmospheric Chemistry and Physics, 9, 5155-5236(2009).
[79] Jimenez J L, Canagaratna M R, Donahue N M et al. Evolution of organic aerosols in the atmosphere[J]. Science, 326, 1525-1529(2009).
[80] Surratt J D, Gómez-González Y, Chan A W H et al. Organosulfate formation in biogenic secondary organic aerosol[J]. The Journal of Physical Chemistry A, 112, 8345-8378(2008).
[81] Tolocka M P, Turpin B. Contribution of organosulfur compounds to organic aerosol mass[J]. Environmental Science & Technology, 46, 7978-7983(2012).
[82] Hansen A M K, Hong J, Raatikainen T et al. Hygroscopic properties and cloud condensation nuclei activation of limonene-derived organosulfates and their mixtures with ammonium sulfate[J]. Atmospheric Chemistry and Physics, 15, 14071-14089(2015).
[83] Estillore A D, Hettiyadura A P S, Qin Z et al. Water uptake and hygroscopic growth of organosulfate aerosol[J]. Environmental Science & Technology, 50, 4259-4268(2016).
[84] Catling D C, Claire M W, Zahnle K J et al. Atmospheric origins of perchlorate on Mars and in the Atacama[J]. Journal of Geophysical Research: Planets, 115, E00-11(2010).
[85] Kounaves S P, Stroble S T, Anderson R M et al. Discovery of natural perchlorate in the Antarctic Dry Valleys and its global implications[J]. Environmental Science & Technology, 44, 2360-2364(2010).
[86] Gough R V, Chevrier V F, Baustian K J et al. Laboratory studies of perchlorate phase transitions: Support for metastable aqueous perchlorate solutions on Mars[J]. Earth and Planetary Science Letters, 312, 371-377(2011).
[87] Martín-Torres F J, Zorzano M P, Valentín-Serrano P et al. Transient liquid water and water activity at Gale crater on Mars[J]. Nature Geoscience, 8, 357-361(2015).
[88] Nuding D L, Davis R D, Gough R V et al. The aqueous stability of a Mars salt analog: Instant Mars[J]. Journal of Geophysical Research: Planets, 120, 588-598(2015).
[89] Smith P H, Tamppari L K, Arvidson R E et al. H2O at the Phoenix landing site[J]. Science, 325, 58-61(2009).
[90] Martínez G M, Newman C N, De Vicente-Retortillo A et al. The modern near-surface Martian climate: A review of in-situ meteorological data from Viking to Curiosity[J]. Space Science Reviews, 212, 295-338(2017).
[91] Jia X H, Gu W J, Li Y J et al. Phase transitions and hygroscopic growth of Mg(ClO4)2, NaClO4, and NaClO4·H2O: Implications for the stability of aqueous water in hyperarid environments on Mars and on Earth[J]. ACS Earth and Space Chemistry, 2, 159-167(2018).
[92] Gu W J, Li Y J, Tang M J et al. Water uptake and hygroscopicity of perchlorates and implications for the existence of liquid water in some hyperarid environments[J]. RSC Advances, 7, 46866-46873(2017).
[93] Davidson N, Tong H J, Kalberer M et al. Measurement of the Raman spectra and hygroscopicity of four pharmaceutical aerosols as they travel from pressurised metered dose inhalers (pMDI) to a model lung[J]. International Journal of Pharmaceutics, 520, 59-69(2017).
[94] Kleinstreuer; C, Zhang; Z, Li Z. Modeling airflow and particle transport/deposition in pulmonary airways[J]. Respiratory Physiology & Neurobiology, 163, 128-138(2008).
[95] Malvè M, Sánchez-Matás C, López-Villalobos J L. Modelling particle transport and deposition in the human healthy and stented tracheobronchial airways[J]. Annals of Biomedical Engineering, 48, 1805-1820(2020).
[96] Tong H J, Fitzgerald C, Gallimore P J et al. Rapid interrogation of the physical and chemical characteristics of salbutamol sulphate aerosol from a pressurised metered-dose inhaler (pMDI)[J]. Chemical Communications, 50, 15499-15502(2014).
[97] Broday D M, Georgopoulos P G. Growth and deposition of hygroscopic particulate matter in the human lungs[J]. Aerosol Science and Technology, 34, 144-159(2001).
[98] Hiller F C, Mazumder M K, Wilson J D et al. Aerodynamic size distribution, hygroscopicity and deposition estimation of beclomethasone dipropionate aerosol[J]. Journal of Pharmacy and Pharmacology, 32, 605-609(2011).
[99] Umetsu D T, McIntire J J, Akbari O et al. Asthma: An epidemic of dysregulated immunity[J]. Nature Immunology, 3, 715-720(2002).
[100] Dickstein B. Enzyme lysis of asthmatic sputum. A review and progress report[J]. Annals of Allergy, 17, 784-801(1959).
[101] Simon S W, Harmon G A. Comparison of various expectorant drugs employing a new method for determining sputum viscosity[J]. Journal of Allergy, 32, 493-500(1961).
[102] Labiris N R, Dolovich M B. Pulmonary drug delivery. Part I: Physiological factors affecting therapeutic effectiveness of aerosolized medications[J]. British Journal of Clinical Pharmacology, 56, 588-599(2003).
[103] Shubin H, Sherson J S, Weissman D. Trypsin therapy in pulmonary diseases, 1955-1960[J]. Diseases of the Chest, 40, 148-153(1961).
[104] Mather G K, Terblanche D E, Steffens F E et al. Results of the South African cloud-seeding experiments using hygroscopic flares[J]. Journal of Applied Meteorology, 36, 1433-1447(1997).
[105] Silverman B A. A critical assessment of hygroscopic seeding of convective clouds for rainfall enhancement[J]. Bulletin of the American Meteorological Society, 84, 1219-1230(2003).
[106] An H, Chen Y, Wang Y et al. High-performance solar-driven water harvesting from air with a cheap and scalable hygroscopic salt modified metal-organic framework[J]. Chemical Engineering Journal, 461, 141955(2023).
[107] Lu K J, Liu C J, Liu J et al. Hierarchical natural pollen cell-derived composite sorbents for efficient atmospheric water harvesting[J]. ACS Applied Materials & Interfaces, 14, 33032-33040(2022).
[108] Nandakumar D K, Zhang Y X, Ravi S K et al. Solar energy triggered clean water harvesting from humid air existing above sea surface enabled by a hydrogel with ultrahigh hygroscopicity[J]. Advanced Materials, 31, e1806730(2019).
[109] Talukdar P, Olutmayin S O, Osanyintola A F et al. An experimental data set for benchmarking 1-D, transient heat and moisture transfer models of hygroscopic building materials. Part I: Experimental facility and material property data[J]. International Journal of Heat and Mass Transfer, 50, 4527-4539(2007).
[110] Gómez-Arriaran I, Sellens-Fernández I, Odriozola-Maritorena M et al. A PC-tool to calculate the moisture buffer value[J]. Energy Procedia, 133, 68-75(2017).
[111] Sagar V R, Kumar P S. Recent advances in drying and dehydration of fruits and vegetables: A review[J]. Journal of Food Science and Technology, 47, 15-26(2010).
[112] Wu J X, Zhang L, Fan K. Recent advances in ultrasound-coupled drying for improving the quality of fruits and vegetables: A review[J]. International Journal of Food Science & Technology, 57, 5722-5731(2022).
[113] Chen S G, Zhang S B, Galluzzi M et al. Insight into multifunctional polyester fabrics finished by one-step eco-friendly strategy[J]. Chemical Engineering Journal, 358, 634-642(2019).
[114] Wang Y F, Xia G, Yu H et al. Mussel-inspired design of a self-adhesive agent for durable moisture management and bacterial inhibition on PET fabric[J]. Advanced Materials, 33, e2100140(2021).
[115] Sun J X, Liu L, Xu L et al. Key role of nitrate in phase transitions of urban particles: Implications of important reactive surfaces for secondary aerosol formation[J]. Journal of Geophysical Research: Atmospheres, 123, 1234-1243(2018).
Get Citation
Copy Citation Text
Wenjun GU, Ye YUAN, Lanxiadi CHEN, Yanan CAO, Chao PENG, Mingjin TANG. Application of vapor sorption analyzer in aerosol hygroscopicity studies[J]. Journal of Atmospheric and Environmental Optics, 2024, 19(1): 1
Category:
Received: Sep. 13, 2023
Accepted: --
Published Online: Mar. 19, 2024
The Author Email: Chao PENG (chao.peng1027@gmail.com)