Chinese Journal of Lasers, Volume. 48, Issue 15, 1502002(2021)
Ultrafast Laser Fabricating of Controllable Micro-Nano Dual-Scale Metallic Surface Structures and Their Functionalization
[2] Dorrer C, Rühe J. Some thoughts on superhydrophobic wetting[J]. Soft Matter, 5, 51-61(2009).
[3] Zhang P, Lü F Y. A review of the recent advances in superhydrophobic surfaces and the emerging energy-related applications[J]. Energy, 82, 1068-1087(2015).
[4] Liu K S, Yao X, Jiang L. Recent developments in bio-inspired special wettability[J]. Chemical Society Reviews, 39, 3240-3255(2010).
[5] Feng L, Zhang Y N, Xi J M et al. Petal effect: a superhydrophobic state with high adhesive force[J]. Langmuir, 24, 4114-4119(2008).
[6] Long J Y, Fan P X, Gong D W et al. Superhydrophobic surfaces fabricated by femtosecond laser with tunable water adhesion: from lotus leaf to rose petal[J]. ACS Applied Materials & Interfaces, 7, 9858-9865(2015).
[7] Kreder M J, Alvarenga J, Kim P et al. Design of anti-icing surfaces: smooth, textured or slippery?[J]. Nature Reviews Materials, 1, 15003(2016).
[8] Zhuo Y Z, Wang F, Xiao S B et al. One-step fabrication of bioinspired lubricant-regenerable icephobic slippery liquid-infused porous surfaces[J]. ACS Omega, 3, 10139-10144(2018).
[9] Guo P, Zheng Y, Wen M et al. Icephobic/anti-icing properties of micro/nanostructured surfaces[J]. Advanced Materials, 24, 2642-2648(2012).
[10] Wang F, Xiao S B, Zhuo Y Z et al. Liquid layer generators for excellent icephobicity at extremely low temperatures[J]. Materials Horizons, 6, 2063-2072(2019).
[11] Jin M M, Shen Y Z, Luo X Y et al. A combination structure of microblock and nanohair fabricated by chemical etching for excellent water repellency and icephobicity[J]. Applied Surface Science, 455, 883-890(2018).
[12] Golovin K, Dhyani A, Thouless M D et al. Low-interfacial toughness materials for effective large-scale deicing[J]. Science, 364, 371-375(2019).
[13] Kim P, Wong T S, Alvarenga J et al. Liquid-infused nanostructured surfaces with extreme anti-ice and anti-frost performance[J]. ACS Nano, 6, 6569-6577(2012).
[15] Wang Y Y, Xue J, Wang Q J et al. Verification of icephobic/anti-icing properties of a superhydrophobic surface[J]. ACS Applied Materials & Interfaces, 5, 3370-3381(2013).
[16] Cui W J, Jiang Y, Mielonen K et al. The verification of icephobic performance on biomimetic superhydrophobic surfaces and the effect of wettability and surface energy[J]. Applied Surface Science, 466, 503-514(2019).
[17] Meuler A J. McKinley G H, Cohen R E. Exploiting topographical texture to impart icephobicity[J]. ACS Nano, 4, 7048-7052(2010).
[18] Meuler A J, Smith J D, Varanasi K K et al. Relationships between water wettability and ice adhesion[J]. ACS Applied Materials & Interfaces, 2, 3100-3110(2010).
[19] Pan R, Zhang H J, Zhong M L. Triple-scale superhydrophobic surface with excellent anti-icing and icephobic performance via ultrafast laser hybrid fabrication[J]. ACS Applied Materials & Interfaces, 13, 1743-1753(2021).
[20] Parker A R, Lawrence C R. Water capture by a desert beetle[J]. Nature, 414, 33-34(2001).
[22] Lee A, Moon M W, Lim H et al. Water harvest via dewing[J]. Langmuir, 28, 10183-10191(2012).
[23] Ju J, Bai H, Zheng Y et al. A multi-structural and multi-functional integrated fog collection system in cactus[J]. Nature Communications, 3, 1247(2012).
[24] Liu W J, Fan P X, Cai M Y et al. An integrative bioinspired venation network with ultra-contrasting wettability for large-scale strongly self-driven and efficient water collection[J]. Nanoscale, 11, 8940-8949(2019).
[25] Feng W Q, Ueda E, Levkin P A. Droplet microarrays: from surface patterning to high-throughput applications[J]. Advanced Materials, 30, e1706111(2018).
[27] Xu T L, Xu L P, Zhang X J et al. Bioinspired superwettable micropatterns for biosensing[J]. Chemical Society Reviews, 48, 3153-3165(2019).
[28] Dhiman S, Jayaprakash K S, Iqbal R et al. Self-transport and manipulation of aqueous droplets on oil-submerged diverging groove[J]. Langmuir, 34, 12359-12368(2018).
[29] Paulssen D, Hardt S, Levkin P A. Droplet sorting and manipulation on patterned two-phase slippery lubricant-infused surface[J]. ACS Applied Materials & Interfaces, 11, 16130-16138(2019).
[30] Bruchmann J, Pini I, Gill T S et al. Patterned SLIPS for the formation of arrays of biofilm microclusters with defined geometries[J]. Advanced Healthcare Materials, 6, 1601082(2017).
[31] Liu W J, Pan R, Cai M Y et al. Oil-triggered switchable wettability on patterned alternating air/lubricant-infused superamphiphobic surfaces[J]. Journal of Materials Chemistry A, 8, 6647-6660(2020).
[34] Xi J Q, Schubert M F, Kim J K et al. Optical thin-film materials with low refractive index for broadband elimination of Fresnel reflection[J]. Nature Photonics, 1, 176-179(2007).
[35] Teperik T V, Borisov A G et al. Omnidirectional absorption in nanostructured metal surfaces[J]. Nature Photonics, 2, 299-301(2008).
[36] Landy N I, Sajuyigbe S, Mock J J et al. Perfect metamaterial absorber[J]. Physical Review Letters, 100, 207402(2008).
[37] Vorobyev A Y, Guo C L. Metallic light absorbers produced by femtosecond laser pulses[J]. Advances in Mechanical Engineering, 2, 452749(2010).
[38] Hwang T Y, Vorobyev A Y, Guo C L. Enhanced efficiency of solar-driven thermoelectric generator with femtosecond laser-textured metals[J]. Optics Express, 19, A824-A829(2011).
[39] Fan P X, Bai B F, Zhong M L et al. General strategy toward dual-scale-controlled metallic micro-nano hybrid structures with ultralow reflectance[J]. ACS Nano, 11, 7401-7408(2017).
[40] Fan P X, Bai B F, Long J Y et al. Broadband high-performance infrared antireflection nanowires facilely grown on ultrafast laser structured Cu surface[J]. Nano Letters, 15, 5988-5994(2015).
[41] Fan P X, Wu H, Zhong M L et al. Large-scale cauliflower-shaped hierarchical copper nanostructures for efficient photothermal conversion[J]. Nanoscale, 8, 14617-14624(2016).
[42] Turner J A. Sustainable hydrogen production[J]. Science, 305, 972-974(2004).
[43] Sapountzi F M, Gracia J M, Weststrate C J J et al. Electrocatalysts for the generation of hydrogen, oxygen and synthesis gas[J]. Progress in Energy and Combustion Science, 58, 1-35(2017).
[44] Cai M Y, Jiang G C, Zhong M L. Laser fabricated electrodes with micro-nano structures for electrocatalytic water splitting[J]. Chinese Journal of Lasers, 48, 0202008(2021).
[45] Chen H N, Yang S H. Hierarchical nanostructures of metal oxides for enhancing charge separation and transport in photoelectrochemical solar energy conversion systems[J]. Nanoscale Horizons, 1, 96-108(2016).
[46] Cai M Y, Pan R, Liu W J et al. Laser-assisted doping and architecture engineering of Fe3O4 nanoparticles for highly enhanced oxygen evolution reaction[J]. ChemSusChem, 12, 3562-3570(2019).
[47] Sun H M, Yan Z H, Liu F M et al. Self-supported transition-metal-based electrocatalysts for hydrogen and oxygen evolution[J]. Advanced Materials, 32, e1806326(2020).
[48] Cai M Y, Liu W J, Luo X et al. Three-dimensional and in situ-activated spinel oxide nanoporous clusters derived from stainless steel for efficient and durable water oxidation[J]. ACS Applied Materials & Interfaces, 12, 13971-13981(2020).
[49] Cai M Y, Fan P X, Long J Y et al. Large-scale tunable 3D self-supporting WO3 micro-nano architectures as direct photoanodes for efficient photoelectrochemical water splitting[J]. ACS Applied Materials & Interfaces, 9, 17856-17864(2017).
[50] Cai M Y, Han J P, Lin Y et al. CoS2-incorporated WS2 nanosheets for efficient hydrogen production[J]. Electrochimica Acta, 287, 1-9(2018).
[51] Sharma B, Frontiera R R, Henry A I et al. SERS: materials, applications, and the future[J]. Materials Today, 15, 16-25(2012).
[52] Pu H B, Xiao W, Sun D W. SERS-microfluidic systems: a potential platform for rapid analysis of food contaminants[J]. Trends in Food Science & Technology, 70, 114-126(2017).
[53] Chen X, Wang D H, Li J et al. A spectroscopic approach to detect and quantify phosmet residues in oolong tea by surface-enhanced Raman scattering and silver nanoparticle substrate[J]. Food Chemistry, 312, 126016(2020).
[54] Hamad S, Podagatlapalli G K, Mohiddon M A et al. Cost effective nanostructured copper substrates prepared with ultrafast laser pulses for explosives detection using surface enhanced Raman scattering[J]. Applied Physics Letters, 104, 263104(2014).
[55] Dana K, Shende C, Huang H et al. Rapid analysis of cocaine in saliva by surface-enhanced Raman spectroscopy[J]. Journal of Analytical & Bioanalytical Techniques, 6, 1-5(2015).
[56] Wang C, Yu C X. Detection of chemical pollutants in water using gold nanoparticles as sensors: a review[J]. Reviews in Analytical Chemistry, 32, 1-14(2013).
[57] Kline N D, Tripathi A, Mirsafavi R et al. Optimization of surface-enhanced Raman spectroscopy conditions for implementation into a microfluidic device for drug detection[J]. Analytical Chemistry, 88, 10513-10522(2016).
[58] Gao X F, Boryczka J, Kasani S et al. Enabling direct protein detection in a drop of whole blood with an “on-strip” plasma separation unit in a paper-based lateral flow strip[J]. Analytical Chemistry, 93, 1326-1332(2021).
[59] Wang Q, Zeng W D, Xia Z P et al. Recognition of food-borne pathogenic bacteria by Raman spectroscopy based on random forest algorithm[J]. Chinese Journal of Lasers, 48, 0311002(2021).
[60] Li Z L, Li S W, Zhang S L et al. Coherent Raman scattering microscopy technique and its biomedical applications[J]. Chinese Journal of Lasers, 47, 0207005(2020).
[61] Li C H, Ma Z C, Hu X Y et al. Preparation and application of microfluidic Raman detection chip[J]. Chinese Journal of Lasers, 48, 0202010(2021).
[62] Luo S C, Sivashanmugan K, Liao J D et al. Nanofabricated SERS-active substrates for single-molecule to virus detection in vitro : a review[J]. Biosensors and Bioelectronics, 61, 232-240(2014).
[63] Fan P X, Zhong M L, Bai B F et al. Tuning the optical reflection property of metal surfaces via micro-nano particle structures fabricated by ultrafast laser[J]. Applied Surface Science, 359, 7-13(2015).
[64] Tsibidis G D, Fotakis C, Stratakis E. From ripples to spikes: a hydrodynamical mechanism to interpret femtosecond laser-induced self-assembled structures[J]. Physical Review B, 92, 041405(2015).
[65] Nguyen T B, Nguyen N A, Tran T D. Production of SERS substrates using ablated copper surfaces and gold/silver nanoparticles prepared by laser ablation in liquids[J]. Journal of Electronic Materials, 49, 6232-6239(2020).
[66] Chu F J, Yan S, Zheng J G et al. A simple laser ablation-assisted method for fabrication of superhydrophobic SERS substrate on teflon film[J]. Nanoscale Research Letters, 13, 244(2018).
[67] Lin C H, Jiang L, Chai Y H et al. One-step fabrication of nanostructures by femtosecond laser for surface-enhanced Raman scattering[J]. Optics Express, 17, 21581-21589(2009).
[68] Luo X, Liu W J, Chen C H et al. Femtosecond laser micro-nano structured Ag SERS substrates with unique sensitivity, uniformity and stability for food safety evaluation[J]. Optics & Laser Technology, 139, 106969(2021).
[69] Zhizhchenko A, Kuchmizhak A, Vitrik O et al. On-demand concentration of an analyte on laser-printed polytetrafluoroethylene[J]. Nanoscale, 10, 21414-21424(2018).
[70] Ma X D, Jiang L, Li X W et al. Hybrid superhydrophilic-superhydrophobic micro/nanostructures fabricated by femtosecond laser-induced forward transfer for sub-femtomolar Raman detection[J]. Microsystems & Nanoengineering, 5, 48(2019).
[71] Pavliuk G, Pavlov D, Mitsai E W et al. Ultrasensitive SERS-based plasmonic sensor with analyte enrichment system produced by direct laser writing[J]. Nanomaterials, 10, 1-14(2020).
[72] Hu X Y, Pan R, Cai M Y et al. Ultrafast laser micro-nano structured superhydrophobic teflon surfaces for enhanced SERS detection via evaporation concentration[J]. Advanced Optical Technologies, 9, 89-100(2020).
[73] Milionis A, Fragouli D, Martiradonna L et al. Spatially controlled surface energy traps on superhydrophobic surfaces[J]. ACS Applied Materials & Interfaces, 6, 1036-1043(2014).
[74] Pan R, Cai M Y, Liu W J et al. Extremely high Cassie-Baxter state stability of superhydrophobic surfaces via precisely tunable dual-scale and triple-scale micro-nano structures[J]. Journal of Materials Chemistry A, 7, 18050-18062(2019).
[75] Luo X, Pan R, Cai M Y et al. Atto-Molar Raman detection on patterned superhydrophilic-superhydrophobic platform via localizable evaporation enrichment[J]. Sensors and Actuators B, 326, 128826(2021).
Get Citation
Copy Citation Text
Xiao Luo, Weijian Liu, Hongjun Zhang, Minlin Zhong. Ultrafast Laser Fabricating of Controllable Micro-Nano Dual-Scale Metallic Surface Structures and Their Functionalization[J]. Chinese Journal of Lasers, 2021, 48(15): 1502002
Category: laser manufacturing
Received: Mar. 22, 2021
Accepted: Apr. 27, 2021
Published Online: Aug. 5, 2021
The Author Email: Minlin Zhong (zhml@mail.tsinghua.edu.cn)