Journal of Inorganic Materials, Volume. 40, Issue 5, 536(2025)

Low-temperature Sintering of LiBxAl1-xSi2O6 Microwave Dielectric Ceramics with Ultra-low Permittivity

Siyu XIONG1, Chen MO1, Xiaowei ZHU1, Guobin ZHU1, Deqin CHEN1, Laijun LIU1, Xiaodong SHI2, and Chunchun LI1、*
Author Affiliations
  • 11. College of Material Science and Engineering, Guilin University of Technology, Guilin 541004, China
  • 22. College of Physics and Electrical Information Engineering, Guilin University of Technology, Guilin 541004, China
  • show less
    References(45)

    [1] ZHOU D, PANG L X, WANG D W et al. High permittivity and low loss microwave dielectrics suitable for 5G resonators and low temperature co-fired ceramic architecture[J]. Journal of Materials Chemistry C(2017).

    [2] XIONG Y, XIE H Y, RAO Z G et al. Compositional modulation in ZnGa2O4via Zn2+/Ge4+ co-doping to simultaneously lower sintering temperature and improve microwave dielectric properties[J]. Journal of Advanced Ceramics(2021).

    [3] LIN Q B, SONG K X, LIU B et al. Vibrational spectroscopy and microwave dielectric properties of AY2Si3O10 (A = Sr, Ba) ceramics for 5G applications[J]. Ceramics International(2020).

    [4] CHEN D Q, YAN N, CAO X F et al. Entropy regulation in LaNbO4-based fergusonite to implement high-temperature phase transition and promising dielectric properties[J]. Journal of Advanced Ceramics(2023).

    [5] ZHANG P, ZHAO Y G. Influence of Sm3+ substitutions for Nd3+ on the microwave dielectric properties of (Nd1-xSmx)NbO4 (x = 0.02-0.15) ceramics[J]. Journal of Alloys and Compounds(2016).

    [6] JABEEN S, KHAN Q U. An integrated MIMO antenna design for Sub-6 GHz & millimeter-wave applications with high isolation[J]. AEU-International Journal of Electronics and Communications(2022).

    [7] LOU W C, MAO M M, SONG K X et al. Low permittivity cordierite-based microwave dielectric ceramics for 5G/6G telecommunications[J]. Journal of the European Ceramic Society(2022).

    [8] XIONG S Y, CHEN D Q, ZHU X W et al. Processing strategy and composite regulation on dielectric performance in Li2O-Al2O3-B2O3 dielectric systems using SrTiO3[J]. Journal of the American Ceramic Society(2024).

    [9] WU F F, ZHOU D, DU C et al. Design of a Sub-6 GHz dielectric resonator antenna with novel temperature-stabilized (Sm1-xBix)NbO4 (x = 0-0.15) microwave dielectric ceramics[J]. ACS Applied Materials & Interfaces(2022).

    [10] LIU B, HU C C, HUANG Y H et al. Crystal structure, infrared reflectivity spectra and microwave dielectric properties of CaAl2O4 ceramics with low permittivity[J]. Journal of Alloys and Compounds(2019).

    [11] LIU B, LIU X Q, CHEN X M. Sr2LaAlTiO7: a new Ruddlesden- Popper compound with excellent microwave dielectric properties[J]. Journal of Materials Chemistry C(2016).

    [12] JIANG C, WU S P, MA Q et al. Synthesis and microwave dielectric properties of Nd2SiO5 ceramics[J]. Journal of Alloys and Compounds(2012).

    [13] ZOU Z Y, CHEN Z H, LAN X K et al. Weak ferroelectricity and low-permittivity microwave dielectric properties of Ba2Zn(1+x)Si2O(7+x) ceramics[J]. Journal of the European Ceramic Society(2017).

    [14] KRZMANC M M, VALANT M, JANCAR B et al. Sub-solidus synthesis and microwave dielectric characterization of plagioclase feldspars[J]. Journal of the American Ceramic Society(2005).

    [15] SONG X Q, LEI W, ZHOU Y Y et al. Ultra-low fired fluoride composite microwave dielectric ceramics and their application for BaCuSi2O6-based LTCC[J]. Journal of the American Ceramic Society(2020).

    [16] HUANG L, DING S H, YAN X K et al. Structure and microwave dielectric properties of BaAl2Si2O8 ceramic with Li2O-B2O3 sintering additive[J]. Journal of Alloys and Compounds(2020).

    [17] WANG Y R, DING S H, HOU Z P et al. Structure and microwave dielectric properties of Li(Al1-xLix)SiO4-x ceramics[J]. Ceramics International(2023).

    [18] KWEON S H, JOUNG M R, KIM J S et al. Low temperature sintering and microwave dielectric properties of B2O3-added LiAlSiO4 ceramics[J]. Journal of the American Ceramic Society(2011).

    [19] JOSEPH T, SEBASTIAN M T. Microwave dielectric properties of alkaline earth orthosilicates M2SiO4 (M = Ba, Sr, Ca)[J]. Materials Letters(2011).

    [20] PELLETANT A, REVERON H, CHÊVALIER J et al. Grain size dependence of pure β-eucryptite thermal expansion coefficient[J]. Materials Letters(2012).

    [21] FERRAZ R F, PEREIRA M D C, OLIVEIRA R A P. Synthesis and characterization of β-spodumene by a new Sol-Gel route assisted by whey protein[J]. Journal of Sol-Gel Science and Technology(2024).

    [22] WELSCH A M, MURAWSKI D, PREKAJSKI M et al. Ionic conductivity in single-crystal LiAlSi2O6: influence of structure on lithium mobility[J]. Physics and Chemistry of Minerals(2015).

    [23] WELSCH A M, BEHRENS H, ROSS S et al. Structural control of ionic conductivity in LiAlSi2O6 and LiAlSi4O10 glasses and single crystals[J]. Zeitschrift für Physikalische Chemie(2012).

    [24] SHOU H W, DUAN Y H. Anisotropic elasticity and thermal conductivities of (α, β, γ)-LiAlSi2O6 from the first-principles calculation[J]. Journal of Alloys and Compounds(2018).

    [25] LI C C, XIANG H C, YIN C Z et al. Ultra-low loss microwave dielectric ceramic Li2Mg2TiO5 and low-temperature firing via B2O3 addition[J]. Journal of Electronic Materials(2018).

    [26] PENG R, LI Y X, SU H et al. Effect of cobalt-doping on the dielectric properties and densification temperature of Li2MgSiO4 ceramic: calculation and experiment[J]. Journal of Alloys and Compounds(2020).

    [27] PENG R, LI Y X, TANG X L et al. Improved sintering and microwave dielectric properties of Li2CaSiO4 ceramic with magnesium atom substitution[J]. Ceramics International(2020).

    [28] XIONG S Y, ZHU G B, ZHU X W et al. Microstrip dielectric patch antenna fabrication and characterization using ultra low permittivity and low temperature Co-fired LiAlSiO4 ceramics[J]. Journal of the European Ceramic Society(2025).

    [29] LI C, DING S H, SONG T X et al. Structure and microwave dielectric properties of BaAl2-2xLi2xSi2O8-2x ceramics[J]. Ceramics International(2021).

    [30] SHANNON R D. Dielectric polarizabilities of ions in oxides and fluorides[J]. Journal of Applied Physics(1993).

    [31] YIN C Z, DU K, ZHANG M et al. Novel low-εr and lightweight LiBO2 microwave dielectric ceramics with good chemical compatibility with silver[J]. Journal of the European Ceramic Society(2022).

    [32] XING Z, YIN C Z, YU Z Z et al. Synthesis of LiBGeO4 using compositional design and its dielectric behaviors at RF and microwave frequencies[J]. Ceramics International(2020).

    [33] SHANNON R D. Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides[J]. Acta Crystallographica Section A(1976).

    [34] YOON S H, KIM D W, CHO S Y et al. Investigation of the relations between structure and microwave dielectric properties of divalent metal tungstate compounds[J]. Journal of the European Ceramic Society, 2051(2006).

    [35] SU C X, AO L Y, ZHANG Z W et al. Crystal structure, Raman spectra and microwave dielectric properties of novel temperature- stable LiYbSiO4 ceramics[J]. Ceramics International(2020).

    [36] KIM E S, CHUN B S, FREER R et al. Effects of packing fraction and bond valence on microwave dielectric properties of A2+B6+O4 (A2+: Ca, Pb, Ba; B6+: Mo, W) ceramics[J]. Journal of the European Ceramic Society(2010).

    [37] DU Q B, TANG Y, LI J et al. A low-εr and high-Q microwave dielectric ceramic Li2SrSiO4 with abnormally low sintering temperature[J]. Journal of the European Ceramic Society(2021).

    [38] HUANG Y W, YANG X H, ZHANG Y C. Novel single-phase Li2SiO3 microwave dielectric ceramic with low permittivity[J]. Journal of the European Ceramic Society(2025).

    [39] REANEY I M, IDDLES D. Microwave dielectric ceramics for resonators and filters in mobile phone networks[J]. Journal of the American Ceramic Society, 2063(2006).

    [40] PARK H S, YOON K H, KIM E S. Effect of bond valence on microwave dielectric properties of complex perovskite ceramics[J]. Materials Chemistry and Physics(2003).

    [41] GUO Y P, OHSATO H, KAKIMOTO K I. Characterization and dielectric behavior of willemite and TiO2-doped willemite ceramics at millimeter-wave frequency[J]. Journal of the European Ceramic Society(2006).

    [42] ZOU Z Y, DU K, LAN X K et al. Anti-reductive characteristics and dielectric loss mechanisms of Ba2ZnSi2O7 microwave dielectric ceramic[J]. Ceramics International(2019).

    [43] XIAO M, WEI Y S, SUN H R et al. Crystal structure and microwave dielectric properties of low-permittivity Sr2MgSi2O7 ceramic[J]. Journal of Materials Science: Materials in Electronics(2018).

    [44] HE Y H, WEI X L, HE G Q et al. Sintering behavior, phase composition, microstructure, and dielectric properties of low- permittivity alkaline earth silicate Sr3MgSi2O8 ceramics[J]. Journal of Materials Science: Materials in Electronics(2022).

    [45] DOU G, ZHOU D X, GONG S P et al. Low temperature sintering and microwave dielectric properties of Li2ZnSiO4 ceramics with ZB glass[J]. Journal of Materials Science: Materials in Electronics(2013).

    Tools

    Get Citation

    Copy Citation Text

    Siyu XIONG, Chen MO, Xiaowei ZHU, Guobin ZHU, Deqin CHEN, Laijun LIU, Xiaodong SHI, Chunchun LI. Low-temperature Sintering of LiBxAl1-xSi2O6 Microwave Dielectric Ceramics with Ultra-low Permittivity [J]. Journal of Inorganic Materials, 2025, 40(5): 536

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category:

    Received: Nov. 27, 2024

    Accepted: --

    Published Online: Sep. 2, 2025

    The Author Email: Chunchun LI (lichunchun2003@126.com)

    DOI:10.15541/jim20240494

    Topics