Journal of Inorganic Materials, Volume. 40, Issue 5, 536(2025)
[1] ZHOU D, PANG L X, WANG D W et al. High permittivity and low loss microwave dielectrics suitable for 5G resonators and low temperature co-fired ceramic architecture[J]. Journal of Materials Chemistry C(2017).
[2] XIONG Y, XIE H Y, RAO Z G et al. Compositional modulation in ZnGa2O4
[3] LIN Q B, SONG K X, LIU B et al. Vibrational spectroscopy and microwave dielectric properties of AY2Si3O10 (A = Sr, Ba) ceramics for 5G applications[J]. Ceramics International(2020).
[4] CHEN D Q, YAN N, CAO X F et al. Entropy regulation in LaNbO4-based fergusonite to implement high-temperature phase transition and promising dielectric properties[J]. Journal of Advanced Ceramics(2023).
[5] ZHANG P, ZHAO Y G. Influence of Sm3+ substitutions for Nd3+ on the microwave dielectric properties of (Nd1-
[6] JABEEN S, KHAN Q U. An integrated MIMO antenna design for Sub-6 GHz & millimeter-wave applications with high isolation[J]. AEU-International Journal of Electronics and Communications(2022).
[7] LOU W C, MAO M M, SONG K X et al. Low permittivity cordierite-based microwave dielectric ceramics for 5G/6G telecommunications[J]. Journal of the European Ceramic Society(2022).
[8] XIONG S Y, CHEN D Q, ZHU X W et al. Processing strategy and composite regulation on dielectric performance in Li2O-Al2O3-B2O3 dielectric systems using SrTiO3[J]. Journal of the American Ceramic Society(2024).
[9] WU F F, ZHOU D, DU C et al. Design of a Sub-6 GHz dielectric resonator antenna with novel temperature-stabilized (Sm1-
[10] LIU B, HU C C, HUANG Y H et al. Crystal structure, infrared reflectivity spectra and microwave dielectric properties of CaAl2O4 ceramics with low permittivity[J]. Journal of Alloys and Compounds(2019).
[11] LIU B, LIU X Q, CHEN X M. Sr2LaAlTiO7: a new Ruddlesden- Popper compound with excellent microwave dielectric properties[J]. Journal of Materials Chemistry C(2016).
[12] JIANG C, WU S P, MA Q et al. Synthesis and microwave dielectric properties of Nd2SiO5 ceramics[J]. Journal of Alloys and Compounds(2012).
[13] ZOU Z Y, CHEN Z H, LAN X K et al. Weak ferroelectricity and low-permittivity microwave dielectric properties of Ba2Zn(1+
[14] KRZMANC M M, VALANT M, JANCAR B et al. Sub-solidus synthesis and microwave dielectric characterization of plagioclase feldspars[J]. Journal of the American Ceramic Society(2005).
[15] SONG X Q, LEI W, ZHOU Y Y et al. Ultra-low fired fluoride composite microwave dielectric ceramics and their application for BaCuSi2O6-based LTCC[J]. Journal of the American Ceramic Society(2020).
[16] HUANG L, DING S H, YAN X K et al. Structure and microwave dielectric properties of BaAl2Si2O8 ceramic with Li2O-B2O3 sintering additive[J]. Journal of Alloys and Compounds(2020).
[17] WANG Y R, DING S H, HOU Z P et al. Structure and microwave dielectric properties of Li(Al1-
[18] KWEON S H, JOUNG M R, KIM J S et al. Low temperature sintering and microwave dielectric properties of B2O3-added LiAlSiO4 ceramics[J]. Journal of the American Ceramic Society(2011).
[19] JOSEPH T, SEBASTIAN M T. Microwave dielectric properties of alkaline earth orthosilicates M2SiO4 (M = Ba, Sr, Ca)[J]. Materials Letters(2011).
[20] PELLETANT A, REVERON H, CHÊVALIER J et al. Grain size dependence of pure
[21] FERRAZ R F, PEREIRA M D C, OLIVEIRA R A P. Synthesis and characterization of
[22] WELSCH A M, MURAWSKI D, PREKAJSKI M et al. Ionic conductivity in single-crystal LiAlSi2O6: influence of structure on lithium mobility[J]. Physics and Chemistry of Minerals(2015).
[23] WELSCH A M, BEHRENS H, ROSS S et al. Structural control of ionic conductivity in LiAlSi2O6 and LiAlSi4O10 glasses and single crystals[J]. Zeitschrift für Physikalische Chemie(2012).
[24] SHOU H W, DUAN Y H. Anisotropic elasticity and thermal conductivities of (
[25] LI C C, XIANG H C, YIN C Z et al. Ultra-low loss microwave dielectric ceramic Li2Mg2TiO5 and low-temperature firing
[26] PENG R, LI Y X, SU H et al. Effect of cobalt-doping on the dielectric properties and densification temperature of Li2MgSiO4 ceramic: calculation and experiment[J]. Journal of Alloys and Compounds(2020).
[27] PENG R, LI Y X, TANG X L et al. Improved sintering and microwave dielectric properties of Li2CaSiO4 ceramic with magnesium atom substitution[J]. Ceramics International(2020).
[28] XIONG S Y, ZHU G B, ZHU X W et al. Microstrip dielectric patch antenna fabrication and characterization using ultra low permittivity and low temperature Co-fired LiAlSiO4 ceramics[J]. Journal of the European Ceramic Society(2025).
[29] LI C, DING S H, SONG T X et al. Structure and microwave dielectric properties of BaAl2-2
[30] SHANNON R D. Dielectric polarizabilities of ions in oxides and fluorides[J]. Journal of Applied Physics(1993).
[31] YIN C Z, DU K, ZHANG M et al. Novel low-
[32] XING Z, YIN C Z, YU Z Z et al. Synthesis of LiBGeO4 using compositional design and its dielectric behaviors at RF and microwave frequencies[J]. Ceramics International(2020).
[33] SHANNON R D. Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides[J]. Acta Crystallographica Section A(1976).
[34] YOON S H, KIM D W, CHO S Y et al. Investigation of the relations between structure and microwave dielectric properties of divalent metal tungstate compounds[J]. Journal of the European Ceramic Society, 2051(2006).
[35] SU C X, AO L Y, ZHANG Z W et al. Crystal structure, Raman spectra and microwave dielectric properties of novel temperature- stable LiYbSiO4 ceramics[J]. Ceramics International(2020).
[36] KIM E S, CHUN B S, FREER R et al. Effects of packing fraction and bond valence on microwave dielectric properties of A2+B6+O4 (A2+: Ca, Pb, Ba; B6+: Mo, W) ceramics[J]. Journal of the European Ceramic Society(2010).
[37] DU Q B, TANG Y, LI J et al. A low-
[38] HUANG Y W, YANG X H, ZHANG Y C. Novel single-phase Li2SiO3 microwave dielectric ceramic with low permittivity[J]. Journal of the European Ceramic Society(2025).
[39] REANEY I M, IDDLES D. Microwave dielectric ceramics for resonators and filters in mobile phone networks[J]. Journal of the American Ceramic Society, 2063(2006).
[40] PARK H S, YOON K H, KIM E S. Effect of bond valence on microwave dielectric properties of complex perovskite ceramics[J]. Materials Chemistry and Physics(2003).
[41] GUO Y P, OHSATO H, KAKIMOTO K I. Characterization and dielectric behavior of willemite and TiO2-doped willemite ceramics at millimeter-wave frequency[J]. Journal of the European Ceramic Society(2006).
[42] ZOU Z Y, DU K, LAN X K et al. Anti-reductive characteristics and dielectric loss mechanisms of Ba2ZnSi2O7 microwave dielectric ceramic[J]. Ceramics International(2019).
[43] XIAO M, WEI Y S, SUN H R et al. Crystal structure and microwave dielectric properties of low-permittivity Sr2MgSi2O7 ceramic[J]. Journal of Materials Science: Materials in Electronics(2018).
[44] HE Y H, WEI X L, HE G Q et al. Sintering behavior, phase composition, microstructure, and dielectric properties of low- permittivity alkaline earth silicate Sr3MgSi2O8 ceramics[J]. Journal of Materials Science: Materials in Electronics(2022).
[45] DOU G, ZHOU D X, GONG S P et al. Low temperature sintering and microwave dielectric properties of Li2ZnSiO4 ceramics with ZB glass[J]. Journal of Materials Science: Materials in Electronics(2013).
Get Citation
Copy Citation Text
Siyu XIONG, Chen MO, Xiaowei ZHU, Guobin ZHU, Deqin CHEN, Laijun LIU, Xiaodong SHI, Chunchun LI.
Category:
Received: Nov. 27, 2024
Accepted: --
Published Online: Sep. 2, 2025
The Author Email: Chunchun LI (lichunchun2003@126.com)