Laser & Optoelectronics Progress, Volume. 56, Issue 1, 011008(2019)

Convolution-Deconvolution Image Segmentation Model for Fusion Features and Decision

Chenxiao Feng1 and Xili Wang1,2、*
Author Affiliations
  • 1 School of Computer Science, Shaanxi Normal University, Xi'an, Shaanxi 710119, China
  • 2 Key Laboratory of Modern Teaching Technology, Ministry of Education, Shaanxi Normal University, Xi'an, Shaanxi 710119, China
  • show less
    References(22)

    [1] Long J, Shelhamer E, Darrell T. Fully convolutional networks for semantic segmentation. [C]∥IEEE Conference on Computer Vision and Pattern Recognition(CVPR), 3431-3440(2015).

    [3] Wang P Q, Chen P F, Yuan Y et al. Understanding convolution for semantic segmentation. [C]∥IEEE Winter Conference on Applications of Computer Vision (WACV), 1451-1460(2018).

    [4] Noh H, Hong S, Han B. Learning deconvolution network for semantic segmentation. [C]∥IEEE International Conference on Computer Vision(ICCV), 1520-1528(2015).

    [5] Ghiasi G, Fowlkes C C. Laplacianpyramid reconstruction and refinement for semantic segmentation. [C]∥European Conference on Computer Vision. Springer, 519-534(2016).

    [6] Zhao H S, Shi J P, Qi X J et al. Pyramid scene parsing network. [C]∥IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 6230-6239(2017).

    [7] Dai J F, Qi H Z, Xiong Y W et al. Deformable convolutional networks. [C]∥IEEE International Conference on Computer Vision (ICCV), 764-773(2017).

    [8] Zhang R, Tang S, Zhang Y D et al. Scale-adaptive convolutions for scene parsing. [C]∥IEEE International Conference on Computer Vision (ICCV), 2050-2058(2017).

    [13] Gerke M. Use of the stair vision library within the ISPRS 2D semantic labeling benchmark (vaihingen)[J]. Technical Report, University of Twente(2014).

    [14] Heipke C, Mayer H, Wiedemann C et al. Evaluation of automatic road extraction[J]. International Archives of Photogrammetry and Remote Sensing, 32, 151-160(1997).

    [15] Jia Y, Shelhamer E, Donahue J et al. Caffe: convolutional architecture for fast feature embedding. [C]∥Proceedings of the 22nd ACM International Conference on Multimedia. ACM, 675-678(2014).

    [16] Bertelli L, Yu T, Vu D et al. Kernelized structural SVM learning for supervised object segmentation. [C]∥Computer Vision and Pattern Recognition, 2153-2160(2011).

    [17] Yang J, Price B, Cohen S et al. Patchcut: data-driven object segmentation via local shape transfer. [C]∥Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition., 1770-1778(2015).

    [19] Visin F, Ciccone M, Romero A et al. Reseg: a recurrent neural network-based model for semantic segmentation. [C]∥Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition Workshops., 41-48(2016).

    [21] Paisitkriangkrai S, Sherrah J, Janney P et al. Effective semantic pixel labelling with convolutional networks and conditional random fields. [C]∥Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition Workshops., 36-43(2015).

    [22] Audebert N, Le Saux B, Lefèvre S. Semantic segmentation of earth observation data using multimodal and multi-scale deep networks. [C]∥Asian Conference on Computer Vision. Cham: Springer, 180-196(2016).

    Tools

    Get Citation

    Copy Citation Text

    Chenxiao Feng, Xili Wang. Convolution-Deconvolution Image Segmentation Model for Fusion Features and Decision[J]. Laser & Optoelectronics Progress, 2019, 56(1): 011008

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Image Processing

    Received: Aug. 8, 2018

    Accepted: Sep. 18, 2018

    Published Online: Aug. 1, 2019

    The Author Email: Wang Xili (wangxili@snnu.edu.cn)

    DOI:10.3788/LOP56.011008

    Topics