Laser & Optoelectronics Progress, Volume. 56, Issue 1, 011008(2019)
Convolution-Deconvolution Image Segmentation Model for Fusion Features and Decision
Fig. 1. Convolution-deconvolution image segmentation model for fusion features and decision
Fig. 2. Flow charts of data processing. (a) Data processing of CD-FFD; (b) each branch network data processing of CD-FFD
Fig. 3. Segmentation results of CD-FFD model. (a) RGB image; (b) gray image; (c) segmentation result of RGB-Net; (d) segmentation result of GRAY-Net; (e) segmentation result of CD-FFD; (f) ground-truth
Fig. 4. Segmentation results of CD-FFD model. (a) IRRG image; (b) DSM image; (c) segmentation result of IRRG-Net; (d) segmentation result of DSM-Net; (e) segmentation result of CD-FFD; (f) ground-truth
Fig. 5. Segmentation results of other images by CD-FFD model. (a) Original RGB images; (b) segmentationresults of CD-FFD
|
|
|
|
|
Get Citation
Copy Citation Text
Chenxiao Feng, Xili Wang. Convolution-Deconvolution Image Segmentation Model for Fusion Features and Decision[J]. Laser & Optoelectronics Progress, 2019, 56(1): 011008
Category: Image Processing
Received: Aug. 8, 2018
Accepted: Sep. 18, 2018
Published Online: Aug. 1, 2019
The Author Email: Wang Xili (wangxili@snnu.edu.cn)