Laser & Optoelectronics Progress, Volume. 56, Issue 1, 011008(2019)

Convolution-Deconvolution Image Segmentation Model for Fusion Features and Decision

Chenxiao Feng1 and Xili Wang1,2、*
Author Affiliations
  • 1 School of Computer Science, Shaanxi Normal University, Xi'an, Shaanxi 710119, China
  • 2 Key Laboratory of Modern Teaching Technology, Ministry of Education, Shaanxi Normal University, Xi'an, Shaanxi 710119, China
  • show less
    Figures & Tables(10)
    Convolution-deconvolution image segmentation model for fusion features and decision
    Flow charts of data processing. (a) Data processing of CD-FFD; (b) each branch network data processing of CD-FFD
    Segmentation results of CD-FFD model. (a) RGB image; (b) gray image; (c) segmentation result of RGB-Net; (d) segmentation result of GRAY-Net; (e) segmentation result of CD-FFD; (f) ground-truth
    Segmentation results of CD-FFD model. (a) IRRG image; (b) DSM image; (c) segmentation result of IRRG-Net; (d) segmentation result of DSM-Net; (e) segmentation result of CD-FFD; (f) ground-truth
    Segmentation results of other images by CD-FFD model. (a) Original RGB images; (b) segmentationresults of CD-FFD
    • Table 1. Evaluation results of CD-FFD on 200 validation images from Weizmann Horse

      View table

      Table 1. Evaluation results of CD-FFD on 200 validation images from Weizmann Horse

      TypeAverageCOMAverageglobal accAverageIOU
      RGB-Net0.91830.95420.7815
      GRAY-Net0.91690.94070.7327
      CD-FFD0.93290.96560.8188
    • Table 2. Evaluation results of 128 test images from Weizmann horse dataset

      View table

      Table 2. Evaluation results of 128 test images from Weizmann horse dataset

      TypeAverageCOMAverageglobal accAverageIOU
      RGB-Net0.92790.96720.8834
      GRAY-Net0.93600.96480.8753
      CD-FFD0.94070.97080.8949
    • Table 3. Evaluation results of 5 test images from vaihigen dataset

      View table

      Table 3. Evaluation results of 5 test images from vaihigen dataset

      TypeAverageCOMAverageglobal accAverageIOU
      IRRG-Net0.93160.96680.8698
      DSM-Net0.92210.96100.8420
      CD-FFD0.94960.97480.8966
    • Table 4. Comparison among existing results of 128 test images from Weizmann Horse dataset

      View table

      Table 4. Comparison among existing results of 128 test images from Weizmann Horse dataset

      NumberMethodAverageglobal accAverageIOU
      1Ref. [16]94.680.1
      2Ref. [17]95.884.0
      3Ref. [18]95.784.0
      4Ref. [19]94.979.9
      5CD-FFD97.289.5
      6CD-FFD+CRF97.690.1
    • Table 5. Comparison among existing results of 5 test images from vaihigen dataset

      View table

      Table 5. Comparison among existing results of 5 test images from vaihigen dataset

      NumberMethodAverage global acc
      1SegNet[20]0.9078
      2CNN+RF[21]0.9423
      3CNN+RF+CRF[21]0.9430
      4Ref. [22]0.9450
      5CD-FFD0.9748
    Tools

    Get Citation

    Copy Citation Text

    Chenxiao Feng, Xili Wang. Convolution-Deconvolution Image Segmentation Model for Fusion Features and Decision[J]. Laser & Optoelectronics Progress, 2019, 56(1): 011008

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Image Processing

    Received: Aug. 8, 2018

    Accepted: Sep. 18, 2018

    Published Online: Aug. 1, 2019

    The Author Email: Wang Xili (wangxili@snnu.edu.cn)

    DOI:10.3788/LOP56.011008

    Topics