Laser & Optoelectronics Progress, Volume. 58, Issue 11, 1100003(2021)

Research Progress in Nonlinear Error Compensation Suppression and Measurement of Heterodyne Interferometer

Peng Zhang and Jianjun Cui*
Author Affiliations
  • Institute of Geometric Metrology, National Institute of Metrology, Beijing 100029, China
  • show less
    References(59)

    [1] Suo R, Fan Z J, Li Y et al. Dual-frequency laser interferometer present state and development[J]. Laser & Infrared, 34, 251-253(2004).

    [2] Wu C M, Su C S. Nonlinearity in measurements of length by optical interferometry[J]. Measurement Science and Technology, 7, 62-68(1996).

    [3] Basile G, Becker P, Bergamin A et al. Combined optical and X-ray interferometry for high-precision dimensional metrology[J]. Proceedings of the Royal Society of London Series A: Mathematical, Physical and Engineering Sciences, 456, 701-729(2000).

    [4] Diao X F. Study on high speed heterodyne interferometer with spatially separated beams[D](2014).

    [5] Cosijns S J A G, Haitjema H, Schellekens P H J et al. Modeling and verifying non-linearities in heterodyne displacement interferometry[J]. Precision Engineering, 26, 448-455(2002).

    [6] Yang J, Liu Z H, Yuan L B et al. Effects of wave plate on nonlinear errors in polarization laser interferometer[J]. Acta Photonica Sinica, 37, 364-369(2008).

    [7] Deng Y L, Li X J, Geng Y F et al. Influence of nonpolarizing beam splitters on nonlinear error in heterodyne interferometers[J]. Acta Optica Sinica, 32, 1112008(2012).

    [8] Ju A S, Zhong C Y, Hou W M et al. The effect of laser source and PBS on the nonlinearity in heterodyne interferometer[J]. Optik, 126, 112-115(2015).

    [9] Chen H F, Jiang B, Shi Z Y et al. Synthetic model of nonlinearity errors in laser heterodyne interferometry[J]. Applied Optics, 57, 3890-3901(2018).

    [10] Hou W M, Zhang Y B, Xu Q X et al. Effect of beam splitter on nonlinearity in heterodyne interferometers[J]. Chinese Journal of Mechanical Engineering, 44, 163-168(2008).

    [11] Hou W M, Zhang Y B, Le Y F et al. Elimination of the nonlinearity of heterodyne displacement interferometers[J]. Chinese Journal of Lasers, 39, 0908006(2012).

    [12] Le Y F, Ju A S. Analysis and measurement of the nonlinear errors in heterodyne interferometers[J]. Laser & Optoelectronics Progress, 53, 051203(2016).

    [13] Chen H F, Ding X M, Zhong Z et al. Effect of nonlinearity by the nonideal splitting performance of polarization beam splitter in laser heterodyne interferometry[J]. Chinese Journal of Lasers, 33, 1562-1566(2006).

    [14] Wang Y, Hu P C, Fu H J et al. Periodic nonlinear error and its compensation method in heterodyne laser interferometer[J]. Journal of Harbin Institute of Technology, 52, 126-133(2020).

    [15] Eom T B, Choi T Y, Lee K H et al. A simple method for the compensation of the nonlinearity in the heterodyne interferometer[J]. Measurement Science and Technology, 13, 222-225(2002).

    [16] Heydemann P L M. Determination and correction of quadrature fringe measurement errors in interferometers[J]. Applied Optics, 20, 3382-3384(1981).

    [17] Wang C, Fay E D B, Ellis J D et al. Real-time FPGA-based Kalman filter for constant and non-constant velocity periodic error correction[J]. Precision Engineering, 48, 133-143(2017).

    [18] Yan L P, Zhou C Y, Xie J D et al. Nonlinear error compensation method for PGC demodulation based on Kalman filtering[J]. Chinese Journal of Lasers, 47, 0904002(2020).

    [19] Li Z, Herrmann K, Pohlenz F et al. A neural network approach to correcting nonlinearity in optical interferometers[J]. Measurement Science and Technology, 14, 376-381(2003).

    [20] Eom T B, Kim J A, Kang C S et al. A simple phase-encoding electronics for reducing the nonlinearity error of a heterodyne interferometer[J]. Measurement Science and Technology, 19, 075302(2008).

    [21] Zhang M Q. Research on optical nonlinearity error modeling and correction of heterodyne laser interferometry[D](2018).

    [22] Yang Y, Deng Y, Tan Y D et al. Nonlinear error analysis and experimental measurement of Birefringence-Zeeman dual-frequency laser interferometer[J]. Optics Communications, 436, 264-268(2019).

    [23] Guo J H, Zhang Y, Shen S et al. Compensation of nonlinearity in a new optical heterodyne interferometer with doubled measurement resolution[J]. Optics Communications, 3, 49-55(2000).

    [24] Fu H, Hu P, Tan J et al. Simple method for reducing the first-order optical nonlinearity in a heterodyne laser interferometer[J]. Applied Optics, 54, 6321-6326(2015).

    [25] Chen H F, Zhong Z, Ding X M et al. Compensation of nonlinear errors in laser heterodyne interferometers[J]. Optics and Precision Engineering, 18, 1043-1047(2010).

    [26] Lu Z G, Zhang Y L, Liang Y T et al. Measuring the laser polarization state and PBS transmission coefficients in a heterodyne laser interferometer[J]. IEEE Transactions on Instrumentation and Measurement, 67, 706-714(2018).

    [27] Hou W M, Wilkening G. Investigation and compensation of the nonlinearity of heterodyne interferometers[J]. Precision Engineering, 14, 91-98(1992).

    [28] Hou W M, Wang J. Subdivision and elimination of nonlinearity in heterodyne interferometers[J]. Acta Metrologica Sinica, 210-215(2007).

    [29] Wu C M, Lawall J, Deslattes R D et al. Heterodyne interferometer with subatomic periodic nonlinearity[J]. Applied Optics, 38, 4089-4094(1999).

    [30] Lawall J, Kessler E. Michelson interferometry with 10 pm accuracy[J]. Review of Scientific Instruments, 71, 2669-2676(2000).

    [31] Joo K N, Ellis J D, Spronck J W et al. Simple heterodyne laser interferometer with subnanometer periodic errors[J]. Optics Letters, 34, 386-388(2009).

    [32] Joo K N, Ellis J D, Buice E S et al. A novel heterodyne displacement interferometer with no detectable periodic nonlinearity and optical resolution doubling[C], 67-70(2010).

    [33] Joo K N, Ellis J D, Buice E S et al. High resolution heterodyne interferometer without detectable periodic nonlinearity[J]. Optics Express, 18, 1159-1165(2010).

    [34] Ellis J D, Meskers A J H, Spronck J W et al. Fiber-coupled displacement interferometry without periodic nonlinearity[J]. Optics Letters, 36, 3584-3586(2011).

    [35] Fu H J, Wu G L, Hu P C et al. Highly thermal-stable heterodyne interferometer with minimized periodic nonlinearity[J]. Applied Optics, 57, 1463-1467(2018).

    [36] Hu P C, Chen P, Ding X M et al. Balanced plane-mirror heterodyne interferometer with subnanometer periodic nonlinearity[J]. Applied Optics, 53, 5448-5452(2014).

    [37] Yokoyama S, Hori Y, Yokoyama T et al. A heterodyne interferometer constructed in an integrated optics and its metrological evaluation of a picometre-order periodic error[J]. Precision Engineering, 54, 206-211(2018).

    [38] Weichert C, Köchert P, Köning R et al. A heterodyne interferometer with periodic nonlinearities smaller than ±10 pm[J]. Measurement Science and Technology, 23, 094005(2012).

    [39] He Y Z, Zhao S J, Wei H Y et al. Traceable trans-scale heterodyne interferometer with subnanometer resolution[J]. Acta Physica Sinica, 66, 060601(2017).

    [40] Zhao S J, Wei H Y, Zhu M H et al. Green laser interferometric metrology system with sub-nanometer periodic nonlinearity[J]. Applied Optics, 55, 3006-3011(2016).

    [41] You Y, Qi Y F, He B et al. Principles and development of active polarization control technology for fiber lasers[J]. Laser & Optoelectronics Progress, 56, 100001(2019).

    [42] Yan L P, Chen B Y, Chen Z Q et al. Phase-modulated dual-homodyne interferometer without periodic nonlinearity[J]. Measurement Science and Technology, 28, 115006(2017).

    [43] Bu Y M, Zeng Z Y, Du X P et al. Research progress of photoelectric mixing technology in laser three-dimensional imaging[J]. Laser & Optoelectronics Progress, 56, 080002(2019).

    [44] Dai G L, Chao Z X, Yin C Y et al. Detcrmining the residual nonlinear error of a dual-frequency interferometer for nanometrology[J]. Chinese Journal of Lasers, 26, 987-992(1999).

    [45] Badami V G, Patterson S R. A frequency domain method for the measurement of nonlinearity in heterodyne interferometry[J]. Precision Engineering, 24, 41-49(2000).

    [46] Lu C, Troutman J R, Schmitz T L et al. Application of the continuous wavelet transform in periodic error compensation[J]. Precision Engineering, 44, 245-251(2016).

    [47] Wu C M. Periodic nonlinearity resulting from ghost reflections in heterodyne interferometry[J]. Optics Communications, 215, 17-23(2003).

    [48] Zhang Y S. Research of nonlinearity measurment technology in laser heterodyne interferometry based on lock-in amplifier[D](2017).

    [49] Fu H J, Ji R D, Hu P C et al. Measurement method for nonlinearity in heterodyne laser interferometers based on double-channel quadrature demodulation[J]. Sensors, 18, 2768-2777(2018).

    [50] Hou W M. Optical parts and the nonlinearity in heterodyne interferometers[J]. Precision Engineering, 30, 337-346(2006).

    [51] Xu J, Xu Y, Ye X Y et al. The measurement for the nonlinearity of laser interferometer[J]. Acta Metrologica Sinica, 271-274(2003).

    [52] Cui J J. Study on metrological traceability through Fabry-Perot laser interferometer or atomic lattice spacing for micro displacement measurement[D](2014).

    [53] Xu Y, Ye X Y, Li C Y et al. A high precise laser heterodyne interferometer for measuring nanometer displacement[J]. Acta Metrologica Sinica, 32-35(1990).

    [54] Chao Z X, Xu J, Xu Y et al. Fabry-Perot interferometer used for large range nanometer measurement[J]. Acta Metrologica Sinica, 241-246(1999).

    [55] Sun W K, Ma J C, Li Y et al. The study on nonlinear error calibrating system based on Fabry-Parot interferometer with an accuracy of nanometer order[J]. Optical Technique, 33, 748-750(2007).

    [56] Wang D. Study on nonlinear error measurement of laser interferometer based on beat-frequency Fabry-Perot interferometry[D](2019).

    [57] Zhu M H, Wei H Y, Li Yet al. Periodic error characterization in commercial heterodyne interferometer using an external cavity diode laser based Fabry-Perot interferometer[J]. Proceedings of SPIE, 9203, 92031A(2014).

    [58] Bian Z L, Huang C D, Gao M et al. Research on control technique for Pound-Drever-Hall laser frequency stabilizing system[J]. Chinese Journal of Lasers, 39, 0302001(2012).

    [59] Wu X J, Li Y, Wei H Y et al. Femtosecond optical frequency combs for precision measurement applications[J]. Laser & Optoelectronics Progress, 49, 030001(2012).

    Tools

    Get Citation

    Copy Citation Text

    Peng Zhang, Jianjun Cui. Research Progress in Nonlinear Error Compensation Suppression and Measurement of Heterodyne Interferometer[J]. Laser & Optoelectronics Progress, 2021, 58(11): 1100003

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Reviews

    Received: Sep. 20, 2020

    Accepted: Nov. 5, 2020

    Published Online: Jun. 7, 2021

    The Author Email: Jianjun Cui (ycuijj@163.com)

    DOI:10.3788/LOP202158.1100003

    Topics