Acta Physica Sinica, Volume. 69, Issue 13, 134101-1(2020)

Research progress of electromagnetic metamaterial absorbers

Yan-Zhao Wang... He-Xiu Xu*, Chao-Hui Wang, Ming-Zhao Wang and Shao-Jie Wang |Show fewer author(s)
Author Affiliations
  • Air and Missile Defense College, Air Force Engineering University, Xi’an 710051, China
  • show less
    Figures & Tables(8)
    Perfect metamaterial absorber: (a) The schematic of a unit cell; (b) simulation results for the absorption.
    Triple-band metamaterial absorber: (a) Topology structure of the element; (b) equivalent circuit models; (c) measured absorption as a function of frequency for TE mode radiation at different angles of incidence; (d) measured absorption as a function of frequency for TM mode radiation at different angles of incidence[55].
    Terahertz metamaterial absorbers with broad band absorption: (a) Schematic of the whole unit cell; (b) simulation results of absorption for three different configurations of the I-shaped resonators[59].
    Schematic geometry of unit cell for the ultra-broadband perfect metamaterial absorber: (a) the 3 D schematic of a unit cell; (b) the bottom layer with the split ring resonator-II; (c) the third layer with the split ring resonator-I; (d) the third layer with lumped resistances[76].
    Schematic diagram of polarization and angle-independent metamaterial absorber unit cell: (a) Orthogonal polarization insensitive unit cell[81]; (b) single-band metamaterial absorber unit cell[84]; (c) four circular sector-based unit cell; (d) eight circular sector-based unit cell[91].
    Dynamically tunable metamaterial absorber: (a) Tunable metamaterial absorber using varactor diodes[103]; (b) schematic of the unit cell of the graphene based tunable metamaterial absorber[105]; (c) liquid crystal tunable metamaterial perfect absorber[106]; (d) mechanically stretchable and tunable metamaterial absorber[107].
    Multifunctional reconfigurable 3D metamaterial[134].
    • Table 1.

      A summary of methods used to create multiple/broadband absorbers.

      用于实现多频/宽频吸波体的不同方法总结

      View table
      View in Article

      Table 1.

      A summary of methods used to create multiple/broadband absorbers.

      用于实现多频/宽频吸波体的不同方法总结

      方法工作频率相对带宽吸收率厚度周期结构文献
      注: 相对带宽指10 dB吸收带宽, λL为最低工作频率所对应的工作波长, N代表没有提及.
      平面排布30.6—37.5 THz20.26%≥ 80%0.041 λL10.8 µm“三明治”[61]
      多层堆叠24.8/25.5 THzN≥ 90%0.062 λL500 nm多层结构[62]
      多层堆叠7.8—14.7 GHz61.33%≥ 90%0.130 λL11 mm金字塔结构[63]
      集总元件5.3—11.2 GHz70.7%≥ 90%0.077 λL13.6 mm单层结构[68]
      用电阻膜7.0—27.5 GHz118.8%≥ 90%0.093 λL5.5 mm“三明治”[69]
      用电阻膜2.0—18.5 GHz160.97%N0.082 λL11 mm多层结构[72]
      基于SSPP7.6—14.7 GHz63.7%≥ 90%0.177 λL14 mm非平面结构[74]
      混合方法4.5—25.4 GHz139.6%≥ 80%0.075 λL8.4 mm多层结构[76]
      新型结构9.05—11.4 GHz23.0%≥ 80%0.060 λL5 mm分形结构[78]
    Tools

    Get Citation

    Copy Citation Text

    Yan-Zhao Wang, He-Xiu Xu, Chao-Hui Wang, Ming-Zhao Wang, Shao-Jie Wang. Research progress of electromagnetic metamaterial absorbers[J]. Acta Physica Sinica, 2020, 69(13): 134101-1

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Received: Mar. 10, 2020

    Accepted: --

    Published Online: Jan. 4, 2021

    The Author Email:

    DOI:10.7498/aps.69.20200355

    Topics