Laser & Optoelectronics Progress, Volume. 56, Issue 2, 021004(2019)

Improved Image Classification Algorithm Based on Principal Component Analysis Network

Xiaohu Zhao1,2, Liangfei Yin1,3, Yanan Zhu4, Peng Liu1,2、*, Xuekui Wang1,3, and Xueru Shen1,3
Author Affiliations
  • 1 National and Local Joint Engineering Laboratory of Internet Application Technology on Mine, Xuzhou, Jiangsu 221008, China
  • 2 Internet of Things Perception Mine Research Centre, China University of Mining and Technology, Xuzhou, Jiangsu 221008, China
  • 3 School of Information and Control Engineering, China University of Mining and Technology, Xuzhou, Jiangsu 221116, China
  • 4 Microsoft (China), Beijing 100080, China
  • show less
    References(43)

    [3] Krizhevsky A, Sutskever I, Hinton G E. Imagenet classification with deep convolutional neural networks[C]∥The Twenty-sixth Annual Conference on Neural Information Processing Systems (NIPS),December 3-8, 2012, Lake Tahoe, Nevada, USA. Cambr, 1097-1105(2012).

    [4] Szegedy C, Liu W, Jia Y et al. Going deeper with convolutions. [C]∥2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), June 7-12, 2015, Boston, MA, USA. New York: IEEE, 1-9(2015).

    [5] He K, Zhang X, Ren S, Pattern Recognitionet al. Deep residual learning for image recognition[J/OL]. 770-778[2018-05-29]. https:∥arxiv., org/abs/1512, 03385(2016).

    [6] Coates A. Ng A Y Lee H. An analysis of single-layer networks in unsupervised feature learning. [C]∥The fourteenth international conference on Artificial Intelligence and Statistics (AISTATS), April 11-13, 2011, Ft. Lauderdale, FL, USA. United States: JMLR, 15, 215-223(2011).

    [9] Huang G B, Bai Z. Kasun L L C, et al. Local receptive fields based extreme learning machine[J]. IEEE Computational Intelligence Magazine, 10, 18-29(2015).

    [10] Zhang L. 364-[J]. Suganthan P N. A survey of randomized algorithms for training neural networks. Information Sciences, 365, 146-155(2016).

    [11] Qiu X, Suganthan P N. Amaratunga G A J. Electricity load demand time series forecasting with empirical mode decomposition based random vector functional link network[J]. Proceedings of the IEEE, 001394-001399(2016).

    [12] Ren Y, Suganthan P N, Srikanth Net al. Random vector functional link network for short-term electricity load demand forecasting[J]. 367-, 368, 1078-1093(2016).

    [21] Wu J, Qiu S, Zeng R et al. PCANet forcolor image classification in various color spaces. [C]∥International Conference on Cloud Computing and Security (ICCCS), June 16-18, 2017, Nanjing, China. Cham, Switzerland: Springer, 494-505(2017).

    [22] Wang Z, Bi Z, Wang C et al. Traffic lights recognition based on PCANet. [C]∥2015 Chinese Automation Congress (CAC), November 27-29, 2015, Wuhan, China. New York: IEEE, 559-564(2015).

    [24] LeCun Y, Cortes C[2018-05-29]. MNIST handwritten digit database[2018-05-29]. http:∥yann.1ecun.eom/exdb/mnist(2010).

    [25] Krizhevsky A. Learning multiple layers of features from tiny mages Toronto,[D]. Canada: University of Toronto(2009).

    [26] Sun Y, Chen Y, Wang X et al. Deep learning face representation by joint identification-verification[C]∥Twenty-eighth Conference on Neural Information Processing Systems(NIPS), December 8-11,2014, Montreal, Canada. Cambridge,, 1988-1996(2014).

    [31] Jarrett K, Kavukcuoglu K. LeCun Y. What is the best multi-stage architecture for object recognition?. [C]∥2009 IEEE International Conference on Computer Vision (ICCV), September 29 - October 2, 2009, Kyoto, Japan. New York: IEEE, 2146-2153(2009).

    [32] Zeiler M D, Evolutionary Computing, Machine Learning, Preprint ArXiv. ArXiv, 3557, 2013(1301).

    [33] Goodfellow I J, Warde-Farley D, Mirza M et al. 2018-05-30]. https:∥arxiv.org/pdf/1302.4389.pdf.(2013).

    [36] Le Q V, Ngiam J, Chen Z et al. Tiled convolutional neural networks[C]∥The Twenty-Fourth Annual Conference on Neural Information Processing Systems (NIPS 2010), December 6-11, 2010, Vancouver, B.C.,Canada. Cambridge,, 1279-1287(2010).

    [37] Yu K, Zhang T. Improved local coordinate coding using local tangents. [C]∥International Conference on International Conference on Machine Learning(ICML), June 21-24, 2010, Haifa, Israel. New York: ACM, 1215-1222(2010).

    [38] Bo L, Ren X, Fox D. Kernel descriptors for visual recognition[C]∥The Twenty-Fourth Annual Conference on Neural Information Processing Systems(NIPS),December 6-11, 2010, Vancouver, CanadaLake. Cambridge,, 244-252(2010).

    [39] Snoek J, Larochelle H, Adams R P. Practical bayesian optimization of machine learning algorithms[C]∥The Twenty-sixth Annual Conference on Neural Information Processing Systems (NIPS), December 6-11, 2012, Harrahs and Harveys, USA. Cam, 2951-2959(2012).

    Tools

    Get Citation

    Copy Citation Text

    Xiaohu Zhao, Liangfei Yin, Yanan Zhu, Peng Liu, Xuekui Wang, Xueru Shen. Improved Image Classification Algorithm Based on Principal Component Analysis Network[J]. Laser & Optoelectronics Progress, 2019, 56(2): 021004

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Image Processing

    Received: Jun. 27, 2018

    Accepted: Jul. 30, 2018

    Published Online: Aug. 1, 2019

    The Author Email: Peng Liu (13814538110@163.com)

    DOI:10.3788/LOP56.021004

    Topics