Laser & Optoelectronics Progress, Volume. 56, Issue 2, 021004(2019)
Improved Image Classification Algorithm Based on Principal Component Analysis Network
[3] Krizhevsky A, Sutskever I, Hinton G E. Imagenet classification with deep convolutional neural networks[C]∥The Twenty-sixth Annual Conference on Neural Information Processing Systems (NIPS),December 3-8, 2012, Lake Tahoe, Nevada, USA. Cambr, 1097-1105(2012).
[4] Szegedy C, Liu W, Jia Y et al. Going deeper with convolutions. [C]∥2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), June 7-12, 2015, Boston, MA, USA. New York: IEEE, 1-9(2015).
[5] He K, Zhang X, Ren S, Pattern Recognitionet al. Deep residual learning for image recognition[J/OL]. 770-778[2018-05-29]. https:∥arxiv., org/abs/1512, 03385(2016).
[6] Coates A. Ng A Y Lee H. An analysis of single-layer networks in unsupervised feature learning. [C]∥The fourteenth international conference on Artificial Intelligence and Statistics (AISTATS), April 11-13, 2011, Ft. Lauderdale, FL, USA. United States: JMLR, 15, 215-223(2011).
[9] Huang G B, Bai Z. Kasun L L C, et al. Local receptive fields based extreme learning machine[J]. IEEE Computational Intelligence Magazine, 10, 18-29(2015).
[10] Zhang L. 364-[J]. Suganthan P N. A survey of randomized algorithms for training neural networks. Information Sciences, 365, 146-155(2016).
[11] Qiu X, Suganthan P N. Amaratunga G A J. Electricity load demand time series forecasting with empirical mode decomposition based random vector functional link network[J]. Proceedings of the IEEE, 001394-001399(2016).
[12] Ren Y, Suganthan P N, Srikanth Net al. Random vector functional link network for short-term electricity load demand forecasting[J]. 367-, 368, 1078-1093(2016).
[21] Wu J, Qiu S, Zeng R et al. PCANet forcolor image classification in various color spaces. [C]∥International Conference on Cloud Computing and Security (ICCCS), June 16-18, 2017, Nanjing, China. Cham, Switzerland: Springer, 494-505(2017).
[22] Wang Z, Bi Z, Wang C et al. Traffic lights recognition based on PCANet. [C]∥2015 Chinese Automation Congress (CAC), November 27-29, 2015, Wuhan, China. New York: IEEE, 559-564(2015).
[24] LeCun Y, Cortes C[2018-05-29]. MNIST handwritten digit database[2018-05-29]. http:∥yann.1ecun.eom/exdb/mnist(2010).
[25] Krizhevsky A. Learning multiple layers of features from tiny mages Toronto,[D]. Canada: University of Toronto(2009).
[26] Sun Y, Chen Y, Wang X et al. Deep learning face representation by joint identification-verification[C]∥Twenty-eighth Conference on Neural Information Processing Systems(NIPS), December 8-11,2014, Montreal, Canada. Cambridge,, 1988-1996(2014).
[31] Jarrett K, Kavukcuoglu K. LeCun Y. What is the best multi-stage architecture for object recognition?. [C]∥2009 IEEE International Conference on Computer Vision (ICCV), September 29 - October 2, 2009, Kyoto, Japan. New York: IEEE, 2146-2153(2009).
[32] Zeiler M D, Evolutionary Computing, Machine Learning, Preprint ArXiv. ArXiv, 3557, 2013(1301).
[33] Goodfellow I J, Warde-Farley D, Mirza M et al. 2018-05-30]. https:∥arxiv.org/pdf/1302.4389.pdf.(2013).
[36] Le Q V, Ngiam J, Chen Z et al. Tiled convolutional neural networks[C]∥The Twenty-Fourth Annual Conference on Neural Information Processing Systems (NIPS 2010), December 6-11, 2010, Vancouver, B.C.,Canada. Cambridge,, 1279-1287(2010).
[37] Yu K, Zhang T. Improved local coordinate coding using local tangents. [C]∥International Conference on International Conference on Machine Learning(ICML), June 21-24, 2010, Haifa, Israel. New York: ACM, 1215-1222(2010).
[38] Bo L, Ren X, Fox D. Kernel descriptors for visual recognition[C]∥The Twenty-Fourth Annual Conference on Neural Information Processing Systems(NIPS),December 6-11, 2010, Vancouver, CanadaLake. Cambridge,, 244-252(2010).
[39] Snoek J, Larochelle H, Adams R P. Practical bayesian optimization of machine learning algorithms[C]∥The Twenty-sixth Annual Conference on Neural Information Processing Systems (NIPS), December 6-11, 2012, Harrahs and Harveys, USA. Cam, 2951-2959(2012).
Get Citation
Copy Citation Text
Xiaohu Zhao, Liangfei Yin, Yanan Zhu, Peng Liu, Xuekui Wang, Xueru Shen. Improved Image Classification Algorithm Based on Principal Component Analysis Network[J]. Laser & Optoelectronics Progress, 2019, 56(2): 021004
Category: Image Processing
Received: Jun. 27, 2018
Accepted: Jul. 30, 2018
Published Online: Aug. 1, 2019
The Author Email: Peng Liu (13814538110@163.com)