Laser & Optoelectronics Progress, Volume. 56, Issue 2, 021004(2019)

Improved Image Classification Algorithm Based on Principal Component Analysis Network

Xiaohu Zhao1,2, Liangfei Yin1,3, Yanan Zhu4, Peng Liu1,2、*, Xuekui Wang1,3, and Xueru Shen1,3
Author Affiliations
  • 1 National and Local Joint Engineering Laboratory of Internet Application Technology on Mine, Xuzhou, Jiangsu 221008, China
  • 2 Internet of Things Perception Mine Research Centre, China University of Mining and Technology, Xuzhou, Jiangsu 221008, China
  • 3 School of Information and Control Engineering, China University of Mining and Technology, Xuzhou, Jiangsu 221116, China
  • 4 Microsoft (China), Beijing 100080, China
  • show less
    Figures & Tables(16)
    Structural diagram of PCANet
    Schematic of flat neural network
    Schematic of flat neural network model update
    Overall flow chart
    Influence of number of first-layer filters on classification effect
    Influence of number of second-layer filters on classification effect
    Influence of node-number of feature-mapping layer on classification accuracy
    Examples in MNIST dataset
    Examples in Cifar-10 dataset
    Examples in AR dataset
    Examples in FERET dataset
    • Table 1. Recognition accuracies of numbers in MNIST dataset

      View table

      Table 1. Recognition accuracies of numbers in MNIST dataset

      MethodHSC[28]K-NN-SCM[29]CDBN[30]ConvNet[31]Stochastic poolingConvNet[32]Conv. Maxout+Dropout[33]ScatNet-2(SVMrbf )[34]
      Accuracy /%77.0063.0082.0053.0047.0045.0043.00
      MethodPCANet[35]DNN(Le-Net5)[35]PCANet+AdaBoostPCANet+RandomForestPCANet+DecisionTreePCANet+SVMProposed
      Accuracy /%94.0095.0588.2472.6870.1898.4899.27
    • Table 2. Predictionaccuracies of targets in Cifar-10 dataset

      View table

      Table 2. Predictionaccuracies of targets in Cifar-10 dataset

      MethodTiledCNN[36]ImprovedLCC [37]KDES-A[38]Stochastic poolingConvNet [32]CNN+Spearmint[39]Conv. Maxout+Dropout[33]NIN[40]
      Accuracy /%73.1074.5076.0084.8785.0288.3289.59
      MethodDNN(Le-Net5)PCANet+AdaBoostPCANet+RandomForestPCANet+DecisionTreePCANet+SVMProposed
      Accuracy /%83.3979.6775.2074.0187.5099.01
    • Table 3. Recognition accuracies of faces in AR dataset

      View table

      Table 3. Recognition accuracies of faces in AR dataset

      MethodLBP[41]P-LBP[42]PCANet[35]DNN(Le-Net5)PCANet+AdaBoostPCANet+RandomForestPCANet+DecisionTreePCANet+SVMOurs
      Accuracy /%81.3380.3385.0080.0673.5962.5957.2075.5985.21
    • Table 4. Recognition accuracies of faces in FERET dataset%

      View table

      Table 4. Recognition accuracies of faces in FERET dataset%

      DatasetFbFcDup1Dup2
      LBP[41]93.0051.0061.0050.00
      P-LBP[42]98.0098.0090.0085.00
      DMMA[43]98.1098.5081.6083.20
      POEM[44]99.6099.5088.8085.00
      PCANet+SVM99.0098.9390.7690.27
      DNN (Le-Net5)99.0598.7991.2790.52
      Proposed99.4099.9093.2989.90
    • Table 5. Training efficiency comparison in MNIST dataset

      View table

      Table 5. Training efficiency comparison in MNIST dataset

      MethodAccuracy /%Trainingtime /sTrainingtime ofPCANet /sTrainingtime ofFNN /s
      PCANet+DecisionTree70.1822191804415
      PCANet+RandomForest72.6820541726328
      PCANet+AdaBoost88.2429402143797
      PCANet+SVM98.4836052976729
      DNN(Le-Net5)99.053195
      Proposed99.781739168257
    Tools

    Get Citation

    Copy Citation Text

    Xiaohu Zhao, Liangfei Yin, Yanan Zhu, Peng Liu, Xuekui Wang, Xueru Shen. Improved Image Classification Algorithm Based on Principal Component Analysis Network[J]. Laser & Optoelectronics Progress, 2019, 56(2): 021004

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Image Processing

    Received: Jun. 27, 2018

    Accepted: Jul. 30, 2018

    Published Online: Aug. 1, 2019

    The Author Email: Liu Peng (13814538110@163.com)

    DOI:10.3788/LOP56.021004

    Topics