Chinese Journal of Lasers, Volume. 51, Issue 20, 2002301(2024)

Heat Transfer and Flow Mechanisms in Mesoscale Molten Pool of Pure Zinc Fabricated via Laser Powder Bed Fusion (Invited)

Changjun Han1, Daolin Yuan1, Zhi Dong1, Jinmiao Huang1, Chaochao Wu2, Jiazhu Wu3, Yongqiang Yang1, and Di Wang1、*
Author Affiliations
  • 1School of Mechanical and Automotive Engineering, South China University of Technology, Guangzhou 510641, Guangdong , China
  • 2School of Mechanical Engineering and Automation, Fuzhou University, Fuzhou 350108, Fujian , China
  • 3School of Mechanical Engineering, Guizhou University, Guiyang 550025, Guizhou , China
  • show less
    Figures & Tables(13)
    Powder bed model. (a) Hertz‒Mindlin contact model[18]; (b) LPBF laying powder model[19]
    Schematic diagram of the LPBF geometric model
    Simulated and experimental track widths under different process parameters
    Temperature field and morphology of molten pool at different laser powers (laser scanning rate of 600 mm·s-1). (a) Top view of molten track; (b) side section of the powder bed
    Temperature field and morphology of molten pool at different laser scanning rates (laser power of 60 W). (a) Top view of molten track; (b) side section of the powder bed
    Thermal evolution of monitoring point at different laser powers. (a) Temperature evolution curves; (b) cooling rate curves
    Thermal evolution of measuring point at different laser scanning rates (laser power of 60 W). (a) Temperature evolution curves; (b) cooling rate curves
    Heat accumulation effect in LPBF process of pure Zn (laser power of 60 W, laser scanning rate of 600 mm·s-1)
    Real-time volume of molten pool at different parameters. (a) At different laser powers (scanning rate of 600 mm·s-1);
    Molten pool evolution of pure Zn LPBF process
    Molten pool flow and molten pool morphology under different driving forces. (a) Dominated by Marangoni convection;
    • Table 1. Property parameters of pure zinc[33-35]

      View table

      Table 1. Property parameters of pure zinc[33-35]

      SymbolPropertyValue
      νPoisson’s ratio0.27
      EYoung’s modulus /GPa108
      eCoefficient of restitution0.9
      μsCoefficient of static friction0.62
      μrCoefficient of rolling friction0.01
      TsMelting point /K692
      TevapBoiling point /K1180
      CPSSpecific heat of solidus /(J·K-1·kg-1

      335+0.2T

      479

      CPLSpecific heat of liquidus /(J·K-1·kg-1
      kSThermal conductivity of solidus /(W·m-1·K-1

      137.27‒0.0534T

      8.42+0.06T

      kLThermal conductivity of liquidus /(W·m-1·K-1
      ρSSolidus density /(kg·m-3

      7140

      7434‒0.979T

      ρLLiquidus density /(kg·m-3
      LmLatent heat of melting /(J·kg-1112000
      μViscosity of liquid metal /(Pa·s)0.004
      σSurface tension /(N·m-10.94‒0.0002T
      ηLaser beam absorptivity0.34
    • Table 2. Process parameter setting in simulation and experiment

      View table

      Table 2. Process parameter setting in simulation and experiment

      Sample No.Laser power /W

      Laser scanning rate /

      (mm·s-1

      1, 2, 3, 4, 530, 45, 60, 75, 90600
      6, 7, 8, 960300, 450, 750, 900
    Tools

    Get Citation

    Copy Citation Text

    Changjun Han, Daolin Yuan, Zhi Dong, Jinmiao Huang, Chaochao Wu, Jiazhu Wu, Yongqiang Yang, Di Wang. Heat Transfer and Flow Mechanisms in Mesoscale Molten Pool of Pure Zinc Fabricated via Laser Powder Bed Fusion (Invited)[J]. Chinese Journal of Lasers, 2024, 51(20): 2002301

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Laser Additive Manufacturing

    Received: Feb. 27, 2024

    Accepted: Mar. 29, 2024

    Published Online: Oct. 13, 2024

    The Author Email: Wang Di (mewdlaser@scut.edu.cn)

    DOI:10.3788/CJL240627

    CSTR:32183.14.CJL240627

    Topics