Chinese Journal of Quantum Electronics, Volume. 42, Issue 4, 450(2025)
Progress on ellipsometry utilizing quantum entangled light sources
[1] Drude P. Ueber die gesetze der reflexion und brechung des lichtes an der grenze absorbirender krystalle[J]. Annalen der Physik, 268, 584-625(1887).
[2] Hauge P S, Dill F H. Design and operation of ETA, an automated ellipsometer[J]. IBM Journal of Research and Development, 17, 472-489(1973).
[3] Fujiwara H[M]. Spectroscopic Ellipsometry: Principles and Applications(2007).
[4] Gil J J, Ossikovski R[M]. Polarized Light and the Mueller Matrix Approach(2022).
[5] Giovannetti V, Lloyd S, Maccone L. Quantum-enhanced measurements: Beating the standard quantum limit[J]. Science, 306, 1330-1336(2004).
[6] Nagata T, Okamoto R, O'brien J L et al. Beating the standard quantum limit with four-entangled photons[J]. Science, 316, 726-729(2007).
[7] Pezzé L, Smerzi A. Entanglement, nonlinear dynamics, and the Heisenberg limit[J]. Physical Review Letters, 102, 100401(2009).
[8] Kuzmich A, Mandel L. Sub-shot-noise interferometric measurements with two-photon states[J]. Quantum and Semiclassical Optics: Journal of the European Optical Society Part B, 10, 493-500(1998).
[9] Sun F W, Liu B H, Gong Y X et al. Experimental demonstration of phase measurement precision beating standard quantum limit by projection measurement[J]. Europhysics Letters, 82, 24001(2008).
[10] Mitchell M W, Lundeen J S, Steinberg A M. Super-resolving phase measurements with a multiphoton entangled state[J]. Nature, 429, 161-164(2004).
[11] Xiang G Y, Higgins B L, Berry D W et al. Entanglement-enhanced measurement of a completely unknown optical phase[J]. Nature Photonics, 5, 43-47(2011).
[12] Zhou X Q, Cable H, Whittaker R et al. Quantum-enhanced tomography of unitary processes[J]. Optica, 2, 510-516(2015).
[13] Pedram A, Besaga V R, Gassab L et al. Quantum estimation of the Stokes vector rotation for a general polarimetric transformation[J]. New Journal of Physics, 26, 093033(2024).
[14] Rudnicki Ł, Sánchez-Soto L L, Leuchs G et al. Fundamental quantum limits in ellipsometry[J]. Optics Letters, 45, 4607-4610(2020).
[15] Feng S, Pfister O. Sub-shot-noise heterodyne polarimetry[J]. Optics Letters, 29, 2800-2802(2004).
[16] Huang Z X, Macchiavello C, Maccone L. Usefulness of entanglement-assisted quantum metrology[J]. Physical Review A, 94, 012101(2016).
[17] Demkowicz-Dobrzański R, Maccone L. Using entanglement against noise in quantum metrology[J]. Physical Review Letters, 113, 250801(2014).
[18] Jones R C. A new calculus for the treatment of optical systems. VII. Properties of the N-matrices[J]. Journal of the Optical Society of America, 38, 671-685(1948).
[19] Stokes G G. On the composition and resolution of streams of polarized light from different sources[J]. Transactions of the Cambridge Philosophical Society, 9, 399(1851).
[20] Wolf E. Optics in terms of observable quantities[J]. Il Nuovo Cimento, 12, 884-888(1954).
[21] Jones R C. New calculus for the treatment of optical systems. VIII. Electromagnetic theory[J]. Journal of the Optical Society of America, 46, 126-131(1956).
[22] Goldberg A Z. Quantum theory of polarimetry: From quantum operations to Mueller matrices[J]. Physical Review Research, 2, 023038(2020).
[23] Yang K, Wang X Z, Bu Y. Research progress of ellipsometer[J]. Laser & Optoelectronics Progress, 44, 43-49(2007).
[24] Zhu X D, Zhang R J, Zheng Y X et al. Spectroscopic ellipsometry and its applications in the study of thin film materials[J]. Chinese Optics, 12, 1195-1234(2019).
[25] Dong J J, Zhou H L. Polarimeters from bulky optics to integrated optics: A review[J]. Optics Communications, 465, 125598(2020).
[26] Berry H G, Gabrielse G, Livingston A E. Measurement of the Stokes parameters of light[J]. Applied Optics, 16, 3200-3205(1977).
[27] Meng X, Li J X, Song H Q et al. Full-Stokes Fourier-transform imaging spectropolarimeter using a time-division polarization modulator[J]. Applied Optics, 53, 5275-5282(2014).
[28] De Martino A, Kim Y K, Garcia-Caurel E et al. Optimized Mueller polarimeter with liquid crystals[J]. Optics Letters, 28, 616-618(2003).
[29] Alali S, Yang T Y, Vitkin A I. Rapid time-gated polarimetric Stokes imaging using photoelastic modulators[J]. Optics Letters, 38, 2997-3000(2013).
[30] Azzam R M A. Arrangement of four photodetectors for measuring the state of polarization of light[J]. Optics Letters, 10, 309-311(1985).
[31] Compain E, Drevillon B. Broadband division-of-amplitude polarimeter based on uncoated prisms[J]. Applied Optics, 37, 5938-5944(1998).
[32] Gruev V, Ortu A, Lazarus N et al. Fabrication of a dual-tier thin film micropolarization array[J]. Optics Express, 15, 4994-5007(2007).
[33] Morel O, Seulin R, Fofi D. Handy method to calibrate division-of-amplitude polarimeters for the first three Stokes parameters[J]. Optics Express, 24, 13634-13646(2016).
[34] Pors A, Nielsen M G, Bozhevolnyi S I. Plasmonic metagratings for simultaneous determination of Stokes parameters[J]. Optica, 2, 716-723(2015).
[35] Balthasar Mueller J P, Leosson K, Capasso F. Ultracompact metasurface in-line polarimeter[J]. Optica, 3, 42-47(2016).
[36] Zhang X Q, Yang S M, Yue W S et al. Direct polarization measurement using a multiplexed Pancharatnam-Berry metahologram[J]. Optica, 6, 1190-1198(2019).
[37] Rothen A. The ellipsometer, an apparatus to measure thicknesses of thin surface films[J]. Review of Scientific Instruments, 16, 26-30(1945).
[38] Jasperson S N, Schnatterly S E. An improved method for high reflectivity ellipsometry based on a new polarization modulation technique[J]. Review of Scientific Instruments, 40, 761-767(1969).
[39] Adachi S[M]. Optical Constants of Crystalline and Amorphous Semiconductors: Numerical Data and Graphical Information(1999).
[40] Abouraddy A F, Toussaint K C, Sergienko A V et al. Ellipsometric measurements by use of photon pairs generated by spontaneous parametric downconversion[J]. Optics Letters, 26, 1717-1719(2001).
[41] Abouraddy A F, Toussaint K C, Sergienko A V et al. Entangled-photon ellipsometry[J]. Journal of the Optical Society of America B, 19, 656-662(2002).
[42] Aiello A, Puentes G, Woerdman J P. Linear optics and quantum maps[J]. Physical Review A, 76, 032323(2007).
[43] Anderson D G M, Barakat R. Necessary and sufficient conditions for a Mueller matrix to be derivable from a Jones matrix[J]. Journal of the Optical Society of America A, 11, 2305-2319(1994).
[44] Banaszek K, D'Ariano G M, Paris M G A et al. Maximum-likelihood estimation of the density matrix[J]. Physical Review A, 61, 010304(1999).
[45] Abouraddy A F, Sergienko A V, Saleh B E A et al. Quantum entanglement and the two-photon Stokes parameters[J]. Optics Communications, 201, 93-98(2002).
[46] He C, He H H, Chang J T et al. Polarisation optics for biomedical and clinical applications: A review[J]. Light, Science & Applications, 10, 194(2021).
[48] Magnitskiy S, Agapov D, Chirkin A. Quantum ghost polarimetry with entangled photons[J]. Optics Letters, 47, 754-757(2022).
[49] Toussaint K C, Di Giuseppe G, Bycenski K J et al. Quantum ellipsometry using correlated-photon beams[J]. Physical Review A, 70, 023801(2004).
[50] Graham D J L, Parkins A S, Watkins L R. Ellipsometry with polarisation-entangled photons[J]. Optics Express, 14, 7037-7045(2006).
[51] Zou X F, Li F J, Cui L et al. Fiber based scheme for quantum ellipsometry[J]. Acta Sinica Quantum Optica, 25, 15-21(2019).
[52] Pedram A, Besaga V R, Setzpfandt F et al. Nonlocality enhanced precision in quantum polarimetry via entangled photons[J]. Advanced Quantum Technologies, 7, 2400059(2024).
[53] You C J, Rodriguez-Fajardo V, Francis L et al. Nonlocal Mueller polarimetry[C](2024).
[54] Lung S, Wang K, Pedersen N R H et al. Robust classical and quantum polarimetry with a single nanostructured metagrating[J]. ACS Photonics, 11, 1060-1067(2024).
[55] Tischler N, Krenn M, Fickler R et al. Quantum optical rotatory dispersion[J]. Science Advances, 2, e1601306(2016).
[56] Yoon S J, Lee J S, Rockstuhl C et al. Experimental quantum polarimetry using heralded single photons[J]. Metrologia, 57, 045008(2020).
[57] Restuccia S, Gibson G M, Cronin L et al. Measuring optical activity with unpolarized light: Ghost polarimetry[J]. Physical Review A, 106, 062601(2022).
[59] Saxena A, Kaur M, Devrari V et al. Quantum ghost imaging of a transparent polarisation sensitive phase pattern[J]. Scientific Reports, 12, 21105(2022).
[60] Zhang Y D, He Z, Tong X et al. Quantum imaging of biological organisms through spatial and polarization entanglement[J]. Science Advances, 10, eadk1495(2024).
[61] Li W Q. Research on Development and Application of a High-precision Broadband Mueller Matrix Ellipsometer[D](2016).
[62] Zhang S. Research on Development and Application of the Photoelastic-modulated High-speed Mueller MatrixEllipsometer[D](2021).
[63] Chang J T. A Study on Design of Polarimetric Measurement System for Biomedical Applications[D](2016).
[64] Janassek P, Blumenstein S, Elsäßer W. Recovering a hidden polarization by ghost polarimetry[J]. Optics Letters, 43, 883-886(2018).
[65] Hannonen A, Hoenders B J, Elsässer W et al. Ghost polarimetry using Stokes correlations[J]. Journal of the Optical Society of America A, 37, 714-719(2020).
[66] Magnitskiy S, Agapov D, Chirkin A. Ghost polarimetry with unpolarized pseudo-thermal light[J]. Optics Letters, 45, 3641-3644(2020).
Get Citation
Copy Citation Text
. Progress on ellipsometry utilizing quantum entangled light sources[J]. Chinese Journal of Quantum Electronics, 2025, 42(4): 450
Category: Special Issue on...
Received: Dec. 27, 2024
Accepted: --
Published Online: Jul. 31, 2025
The Author Email: