Photonics Research, Volume. 10, Issue 9, 2147(2022)
Dynamic nitrogen vacancy magnetometry by single-shot optical streaking microscopy
[1] G. Davies, M. F. Hamer. Optical studies of the 1.945 eV vibronic band in diamond. Proc. R. Soc. London A, 348, 285-298(1976).
[2] J. F. Barry, J. M. Schloss, E. Bauch, M. J. Turner, C. A. Hart, L. M. Pham. Sensitivity optimization for NV-diamond magnetometry. Rev. Mod. Phys., 92, 015004(2020).
[3] S. Hernández-Gómez, N. Fabbri. Quantum control for nanoscale spectroscopy with diamond nitrogen-vacancy centers: a short review. Front. Phys., 8, 610868(2021).
[4] T. Zhang, G. Pramanik, K. Zhang, M. Gulka, L. Wang, J. Jing, F. Xu, Z. Li, Q. Wei, P. Cigler, Z. Chu. Toward quantitative bio-sensing with nitrogen–vacancy center in diamond. ACS Sens., 6, 2077-2107(2021).
[5] Y. Wu, F. Jelezko, M. B. Plenio, T. Weil. Diamond quantum devices in biology. Angew. Chem., 55, 6586-6598(2016).
[6] R. Schirhagl, K. Chang, M. Loretz, C. L. Degen. Nitrogen-vacancy centers in diamond: nanoscale sensors for physics and biology. Annu. Rev. Phys. Chem., 65, 83-105(2014).
[7] L. M. Pham, D. Le Sage, P. L. Stanwix, T. K. Yeung, D. Glenn, A. Trifonov, P. Cappellaro, P. R. Hemmer, M. D. Lukin, H. Park, A. Yacoby, R. L. Walsworth. Magnetic field imaging with nitrogen-vacancy ensembles. New J. Phys., 13, 045021(2011).
[8] J.-C. Jaskula, E. Bauch, S. Arroyo-Camejo, M. D. Lukin, S. W. Hell, A. S. Trifonov, R. L. Walsworth. Superresolution optical magnetic imaging and spectroscopy using individual electronic spins in diamond. Opt. Express, 25, 11048-11064(2017).
[9] J. M. Schloss, J. F. Barry, M. J. Turner, R. L. Walsworth. Simultaneous broadband vector magnetometry using solid-state spins. Phys. Rev. Appl., 10, 034044(2018).
[10] J. F. Barry, M. J. Turner, J. M. Schloss, D. R. Glenn, Y. Song, M. D. Lukin, H. Park, R. L. Walsworth. Optical magnetic detection of single-neuron action potentials using quantum defects in diamond. Proc. Natl. Acad. Sci. USA, 113, 14133-14138(2016).
[11] D. Le Sage, K. Arai, D. R. Glenn, S. J. Devience, L. M. Pham, L. Rahn-Lee, M. D. Lukin, A. Yacoby, A. Komeili, R. L. Walsworth. Optical magnetic imaging of living cells. Nature, 496, 486-489(2013).
[12] N. Mohan, C. S. Chen, H. H. Hsieh, Y. C. Wu, H. C. Chang.
[13] G. Kucsko, P. C. Maurer, N. Y. Yao, M. Kubo, H. J. Noh, P. K. Lo, H. Park, M. D. Lukin. Nanometre-scale thermometry in a living cell. Nature, 500, 54-58(2013).
[14] M. Fujiwara, S. Sun, A. Dohms, Y. Nishimura, K. Suto, Y. Takezawa, K. Oshimi, L. Zhao, N. Sadzak, Y. Umehara, Y. Teki, N. Komatsu, O. Benson, Y. Shikano, E. Kage-Nakadai. Real-time nanodiamond thermometry probing
[15] C. A. Hart, J. M. Schloss, M. J. Turner, P. J. Scheidegger, E. Bauch, R. L. Walsworth. N–V-diamond magnetic microscopy using a double quantum 4-Ramsey protocol. Phys. Rev. Appl., 15, 044020(2021).
[16] J. J. Davies. Optically-detected magnetic resonance and its applications. Contemp. Phys., 17, 275-294(1976).
[17] A. M. Wojciechowski, M. Karadas, A. Huck, C. Osterkamp, S. Jankuhn, J. Meijer, F. Jelezko, U. L. Andersen. Contributed review: camera-limits for wide-field magnetic resonance imaging with a nitrogen-vacancy spin sensor. Rev. Sci. Instrum., 89, 031501(2018).
[19] J. Malmivuo, R. Plonsey. Bioelectromagnetism Principles and Applications of Bioelectric and Biomagnetic Fields, 15(1995).
[20] J. L. Webb, L. Troise, N. W. Hansen, J. Achard, O. Brinza, R. Staacke, M. Kieschnick, J. Meijer, J. F. Perrier, K. Berg-Sørensen, A. Huck, U. L. Andersen. Optimization of a diamond nitrogen vacancy centre magnetometer for sensing of biological signals. Front. Phys., 8, 430(2020).
[21] K. Mizuno, H. Ishiwata, Y. Masuyama, T. Iwasaki, M. Hatano. Simultaneous wide-field imaging of phase and magnitude of AC magnetic signal using diamond quantum magnetometry. Sci. Rep., 10, 11611(2020).
[22] L. Gao, J. Liang, C. Li, L. V. Wang. Single-shot compressed ultrafast photography at one hundred billion frames per second. Nature, 516, 74-77(2014).
[23] V. M. Acosta, A. Jarmola, E. Bauch, D. Budker. Optical properties of the nitrogen-vacancy singlet levels in diamond. Phys. Rev. B, 82, 201202(2010).
[24] D. R. Glenn, R. R. Fu, P. Kehayias, D. Le Sage, E. A. Lima, B. P. Weiss, R. L. Walsworth. Micrometer-scale magnetic imaging of geological samples using a quantum diamond microscope. Geochem. Geophys. Geosyst., 18, 3254-3267(2017).
[25] B. D. Matthews, D. A. LaVan, D. R. Overby, J. Karavitis, D. E. Ingber. Electromagnetic needles with submicron pole tip radii for nanomanipulation of biomolecules and living cells. Appl. Phys. Lett., 85, 2968-2970(2004).
[27] A. Kuwahata, T. Kitaizumi, K. Saichi, T. Sato, R. Igarashi, T. Ohshima, Y. Masuyama, T. Iwasaki, M. Hatano, F. Jelezko, M. Kusakabe, T. Yatsui, M. Sekino. Magnetometer with nitrogen-vacancy center in a bulk diamond for detecting magnetic nanoparticles in biomedical applications. Sci. Rep., 10, 2483(2020).
[28] M. Mrózek, A. M. Wojciechowski, W. Gawlik. Characterization of strong NV—gradient in the e-beam irradiated diamond sample. Diam. Relat. Mater., 120, 108689(2021).
[29] R. Rubinas, V. V. Vorobyov, V. V. Soshenko, S. V. Bolshedvorskii, V. N. Sorokin, A. N. Smolyaninov, V. G. Vins, A. P. Yelisseyev, A. V. Akimov. Spin properties of NV centers in high-pressure, high-temperature grown diamond. J. Phys. Commun., 2, 115003(2018).
[30] T. Mittiga, S. Hsieh, C. Zu, B. Kobrin, F. Machado, P. Bhattacharyya, N. Z. Rui, A. Jarmola, S. Choi, D. Budker, N. Y. Yao. Imaging the local charge environment of nitrogen-vacancy centers in diamond. Phys. Rev. Lett., 121, 246402(2018).
[31] F. Alghannam, P. Hemmer. Engineering of shallow layers of nitrogen vacancy colour centres in diamond using plasma immersion ion implantation. Sci. Rep., 9, 5870(2019).
[32] Z. Ma, S. Zhang, Y. Fu, H. Yuan, Y. Shi, J. Gao, L. Qin, J. Tang, J. Liu, Y. Li. Magnetometry for precision measurement using frequency-modulation microwave combined efficient photon-collection technique on an ensemble of nitrogen-vacancy centers in diamond. Opt. Express, 26, 382-390(2018).
[33] M. Pothen, K. Winands, F. Klocke. Compensation of scanner based inertia for laser structuring processes. J. Laser Appl., 29, 012017(2017).
[34] S. Ortega, R. Guerra, M. DIaz, H. Fabelo, S. Lopez, G. M. Callico, R. Sarmiento. Hyperspectral push-broom microscope development and characterization. IEEE Access, 7, 122473(2019).
[35] D. A. Hopper, H. J. Shulevitz, L. C. Bassett. Spin readout techniques of the nitrogen-vacancy center in diamond. Micromachines, 9, 437(2018).
[36] M. Parashar, K. Saha, S. Bandyopadhyay. Axon hillock currents enable single-neuron-resolved 3D reconstruction using diamond nitrogen-vacancy magnetometry. Commun. Phys., 3, 174(2020).
[37] D. Suter, F. Jelezko. Single-spin magnetic resonance in the nitrogen-vacancy center of diamond. Prog. Nucl. Magn. Reson. Spectrosc., 98–99, 50-62(2017).
[38] D. Suter, G. A. Álvarez. Colloquium: protecting quantum information against environmental noise. Rev. Mod. Phys., 88, 041001(2016).
[39] M. Mrózek, D. Rudnicki, P. Kehayias, A. Jarmola, D. Budker, W. Gawlik. Longitudinal spin relaxation in nitrogen-vacancy ensembles in diamond. EPJ Quantum Technol., 2, 22(2015).
[40] L. P. McGuinness, Y. Yan, A. Stacey, D. A. Simpson, L. T. Hall, D. Maclaurin, S. Prawer, P. Mulvaney, J. Wrachtrup, F. Caruso, R. E. Scholten, L. C. L. Hollenberg. Quantum measurement and orientation tracking of fluorescent nanodiamonds inside living cells. Nat. Nanotechnol., 6, 358-363(2011).
[41] M. Block, B. Kobrin, A. Jarmola, S. Hsieh, C. Zu, N. L. Figueroa, V. M. Acosta, J. Minguzzi, J. R. Maze, D. Budker, N. Y. Yao. Optically enhanced electric field sensing using nitrogen-vacancy ensembles. Phys. Rev. Appl., 16, 024024(2021).
[42] F. Dolde, H. Fedder, M. W. Doherty, T. Nöbauer, F. Rempp, G. Balasubramanian, T. Wolf, F. Reinhard, L. C. L. Hollenberg, F. Jelezko, J. Wrachtrup. Electric-field sensing using single diamond spins. Nat. Phys., 7, 459-463(2011).
[43] F. Gorrini, R. Giri, C. E. Avalos, S. Tambalo, S. Mannucci, L. Basso, N. Bazzanella, C. Dorigoni, M. Cazzanelli, P. Marzola, A. Miotello, A. Bifone. Fast and sensitive detection of paramagnetic species using coupled charge and spin dynamics in strongly fluorescent nanodiamonds. ACS Appl. Mater. Interfaces, 11, 24412-24422(2019).
[44] S. Steinert, F. Ziem, L. T. Hall, A. Zappe, M. Schweikert, N. Götz, A. Aird, G. Balasubramanian, L. Hollenberg, J. Wrachtrup. Magnetic spin imaging under ambient conditions with sub-cellular resolution. Nat. Commun., 4, 1607(2013).
[45] F. Perona Martínez, A. C. Nusantara, M. Chipaux, S. K. Padamati, R. Schirhagl. Nanodiamond relaxometry-based detection of free-radical species when produced in chemical reactions in biologically relevant conditions. ACS Sens., 5, 3862-3869(2020).
[46] M. W. Doherty, V. V. Struzhkin, D. A. Simpson, L. P. McGuinness, Y. Meng, A. Stacey, T. J. Karle, R. J. Hemley, N. B. Manson, L. C. L. Hollenberg, S. Prawer. Electronic properties and metrology applications of the diamond NV-center under pressure. Phys. Rev. Lett., 112, 047601(2014).
[47] S. Lagomarsino, A. M. Flatae, H. Kambalathmana, F. Sledz, L. Hunold, N. Soltani, P. Reuschel, S. Sciortino, N. Gelli, M. Massi, C. Czelusniak, L. Giuntini, M. Agio. Creation of silicon-vacancy color centers in diamond by ion implantation. Front. Phys., 8, 626(2021).
[48] S. Castelletto, A. Boretti. Silicon carbide color centers for quantum applications. J. Phys. Photon., 2, 022001(2020).
[49] S. L. Bayliss, D. W. Laorenza, P. J. Mintun, B. D. Kovos, D. E. Freedman, D. D. Awschalom. Optically addressable molecular spins for quantum information processing. Science, 370, 1309-1312(2020).
[50] F. Vetrone, R. Naccache, A. Zamarrón, A. J. De La Fuente, F. Sanz-Rodríguez, L. M. Maestro, E. M. Rodriguez, D. Jaque, J. G. Sole, J. A. Capobianco. Temperature sensing using fluorescent nanothermometers. ACS Nano, 4, 3254-3258(2010).
[51] X. Liu, A. Skripka, Y. Lai, C. Jiang, J. Liu, F. Vetrone, J. Liang. Fast wide-field upconversion luminescence lifetime thermometry enabled by single-shot compressed ultrahigh-speed imaging. Nat. Commun., 12, 6401(2021).
[52] X. Liu, J. Liu, C. Jiang, F. Vetrone, J. Liang. Single-shot compressed optical-streaking ultra-high-speed photography. Opt. Lett., 44, 1387-1390(2019).
[53] E. J. Candès, J. Romberg, T. Tao. Robust uncertainty principles: exact signal reconstruction from highly incomplete frequency information. IEEE Trans. Inf. Theory, 52, 489-509(2006).
[54] S. Voronin, C. Zaroli. Survey of computational methods for inverse problems. Recent Trends in Computational Science and Engineering, 3(2018).
[55] V. Radu, J. C. Price, S. J. Levett, K. K. Narayanasamy, T. D. Bateman-Price, P. B. Wilson, M. L. Mather. Dynamic quantum sensing of paramagnetic species using nitrogen-vacancy centers in diamond. ACS Sens., 5, 703-710(2020).
Get Citation
Copy Citation Text
Mark A. Keppler, Zachary A. Steelman, Zachary N. Coker, Miloš Nesládek, Philip R. Hemmer, Vladislav V. Yakovlev, Joel N. Bixler, "Dynamic nitrogen vacancy magnetometry by single-shot optical streaking microscopy," Photonics Res. 10, 2147 (2022)
Category: Imaging Systems, Microscopy, and Displays
Received: Feb. 7, 2022
Accepted: Jun. 15, 2022
Published Online: Aug. 29, 2022
The Author Email: Mark A. Keppler (keppler.mark@gmail.com)