Acta Optica Sinica, Volume. 43, Issue 8, 0822002(2023)
Nonlinear Photonic Metasurfaces: Fundamentals and Applications
[1] Shen Y R. 50 years of nonlinear optics[J]. Physics, 41, 71-81(2012).
[2] Franken P A, Hill A E, Peters C W et al. Generation of optical harmonics[J]. Physical Review Letters, 7, 118-119(1961).
[3] Chang G Q. Peter Franken and nonlinear optics[J]. Physics, 51, 505-508(2022).
[4] Shen Y R[M]. The principles of nonlinear optics(1984).
[5] Boyd R W[M]. Nonlinear optics(2020).
[6] Armstrong J A, Bloembergen N, Ducuing J et al. Interactions between light waves in a nonlinear dielectric[J]. Physical Review, 127, 1918-1939(1962).
[7] Giordmaine J A. Mixing of light beams in crystals[J]. Physical Review Letters, 8, 19-20(1962).
[8] Maker P D, Terhune R W, Nisenoff M et al. Effects of dispersion and focusing on the production of optical harmonics[J]. Physical Review Letters, 8, 21-22(1962).
[9] Midwinter J E, Warner J. The effects of phase matching method and of uniaxial crystal symmetry on the polar distribution of second-order non-linear optical polarization[J]. British Journal of Applied Physics, 16, 1135-1142(1965).
[10] Fejer M M, Magel G A, Jundt D H et al. Quasi-phase-matched second harmonic generation: tuning and tolerances[J]. IEEE Journal of Quantum Electronics, 28, 2631-2654(1992).
[11] Feng D, Ming N B, Hong J F et al. Enhancement of second-harmonic generation in LiNbO3 crystals with periodic laminar ferroelectric domains[J]. Applied Physics Letters, 37, 607-609(1980).
[12] Yamada M, Nada N, Saitoh M et al. First-order quasi-phase matched LiNbO3 waveguide periodically poled by applying an external field for efficient blue second-harmonic generation[J]. Applied Physics Letters, 62, 435-436(1993).
[13] Zhu S N, Zhu Y Y, Qin Y Q et al. Experimental realization of second harmonic generation in a Fibonacci optical superlattice of LiTaO3[J]. Physical Review Letters, 78, 2752-2755(1997).
[14] Zhu S N, Zhu Y Y, Ming N B. Quasi-phase-matched third-harmonic generation in a quasi-periodic optical superlattice[J]. Science, 278, 843-846(1997).
[15] Chen B Q, Ren M L, Liu R J et al. Simultaneous broadband generation of second and third harmonics from chirped nonlinear photonic crystals[J]. Light: Science & Applications, 3, e189(2014).
[16] Hong L H, Chen B Q, Hu C Y et al. Ultrabroadband nonlinear Raman-Nath diffraction against femtosecond pulse laser[J]. Photonics Research, 10, 905-912(2022).
[17] Berger V. Nonlinear photonic crystals[J]. Physical Review Letters, 81, 4136-4139(1998).
[18] Chen J J, Chen X F. Phase matching in three-dimensional nonlinear photonic crystals[J]. Physical Review A, 80, 013801(2009).
[19] Wei D Z, Wang C W, Wang H J et al. Experimental demonstration of a three-dimensional lithium niobate nonlinear photonic crystal[J]. Nature Photonics, 12, 596-600(2018).
[20] Xu T X, Switkowski K, Chen X et al. Three-dimensional nonlinear photonic crystal in ferroelectric barium calcium titanate[J]. Nature Photonics, 12, 591-595(2018).
[21] Liu S, Switkowski K, Xu C L et al. Nonlinear wavefront shaping with optically induced three-dimensional nonlinear photonic crystals[J]. Nature Communications, 10, 3208(2019).
[22] Wei D Z, Wang C W, Xu X Y et al. Efficient nonlinear beam shaping in three-dimensional lithium niobate nonlinear photonic crystals[J]. Nature Communications, 10, 4193(2019).
[23] Xu X Y, Wang T X, Chen P C et al. Femtosecond laser writing of lithium niobate ferroelectric nanodomains[J]. Nature, 609, 496-501(2022).
[24] Keren-Zur S, Ellenbogen T. A new dimension for nonlinear photonic crystals[J]. Nature Photonics, 12, 575-577(2018).
[25] Zhang Y, Sheng Y, Zhu S N et al. Nonlinear photonic crystals: from 2D to 3D[J]. Optica, 8, 372-381(2021).
[26] Veselago V G. The electrodynamics of substances with simultaneously negative values of ε and μ[J]. Soviet Physics Uspekhi, 10, 509-514(1968).
[27] Shelby R A, Smith D R, Schultz S. Experimental verification of a negative index of refraction[J]. Science, 292, 77-79(2001).
[28] Soukoulis C M, Wegener M. Optical metamaterials: more bulky and less lossy[J]. Science, 330, 1633-1634(2010).
[29] Soukoulis C M, Wegener M. Past achievements and future challenges in the development of three-dimensional photonic metamaterials[J]. Nature Photonics, 5, 523-530(2011).
[30] Zheludev N I, Kivshar Y S. From metamaterials to metadevices[J]. Nature Materials, 11, 917-924(2012).
[31] Cai W S, Shalaev V M[M]. Optical metamaterials: fundamentals and applications(2010).
[32] Yu N F, Genevet P, Kats M A et al. Light propagation with phase discontinuities: generalized laws of reflection and refraction[J]. Science, 334, 333-337(2011).
[33] Kildishev A V, Boltasseva A, Shalaev V M. Planar photonics with metasurfaces[J]. Science, 339, 1232009(2013).
[34] Glybovski S B, Tretyakov S A, Belov P A et al. Metasurfaces: from microwaves to visible[J]. Physics Reports, 634, 1-72(2016).
[35] Chen H T, Taylor A J, Yu N F. A review of metasurfaces: physics and applications[J]. Reports on Progress in Physics, 79, 076401(2016).
[36] Hu J, Bandyopadhyay S, Liu Y H et al. A review on metasurface: from principle to smart metadevices[J]. Frontiers in Physics, 8, 586087(2021).
[37] Kim J, Seong J, Yang Y et al. Tunable metasurfaces towards versatile metalenses and metaholograms: a review[J]. Advanced Photonics, 4, 024001(2022).
[38] Zhou H Q, Li X, Xu Z T et al. Correlated triple hybrid amplitude and phase holographic encryption based on a metasurface[J]. Photonics Research, 10, 678-686(2022).
[39] Minovich A E, Miroshnichenko A E, Bykov A Y et al. Functional and nonlinear optical metasurfaces[J]. Laser & Photonics Reviews, 9, 195-213(2015).
[40] Li G X, Zhang S, Zentgraf T. Nonlinear photonic metasurfaces[J]. Nature Reviews Materials, 2, 17010(2017).
[41] Krasnok A, Tymchenko M, Alù A. Nonlinear metasurfaces: a paradigm shift in nonlinear optics[J]. Materials Today, 21, 8-21(2018).
[42] Kivshar Y. All-dielectric meta-optics and non-linear nanophotonics[J]. National Science Review, 5, 144-158(2018).
[43] Sain B, Meier C, Zentgraf T. Nonlinear optics in all-dielectric nanoantennas and metasurfaces: a review[J]. Advanced Photonics, 1, 024002(2019).
[44] Pendry J B, Holden A J, Robbins D J et al. Magnetism from conductors and enhanced nonlinear phenomena[J]. IEEE Transactions on Microwave Theory and Techniques, 47, 2075-2084(1999).
[45] Klein M W, Enkrich C, Wegener M et al. Second-harmonic generation from magnetic metamaterials[J]. Science, 313, 502-504(2006).
[46] Zhang X C, Deng J H, Jin M K et al. Giant enhancement of second-harmonic generation from a nanocavity metasurface[J]. Science China Physics, Mechanics & Astronomy, 64, 294215(2021).
[47] Celebrano M, Wu X F, Baselli M et al. Mode matching in multiresonant plasmonic nanoantennas for enhanced second harmonic generation[J]. Nature Nanotechnology, 10, 412-417(2015).
[48] Niesler F P, Niesler F B P, Forstner J et al. Collective effects in second-harmonic generation from split-ring-resonator arrays[J]. Physical Review Letters, 109, 015502(2012).
[49] Czaplicki R, Kiviniemi A, Laukkanen J et al. Surface lattice resonances in second-harmonic generation from metasurfaces[J]. Optics Letters, 41, 2684-2687(2016).
[50] Michaeli L, Keren-Zur S, Avayu O et al. Nonlinear surface lattice resonance in plasmonic nanoparticle arrays[J]. Physical Review Letters, 118, 243904(2017).
[51] Czaplicki R, Husu H N, Siikanen R et al. Enhancement of second-harmonic generation from metal nanoparticles by passive elements[J]. Physical Review Letters, 110, 093902(2013).
[52] Deng J H, Tang Y T, Chen S M et al. Giant enhancement of second-order nonlinearity of epsilon-near- zero medium by a plasmonic metasurface[J]. Nano Letters, 20, 5421-5427(2020).
[53] Lee J, Tymchenko M, Argyropoulos C et al. Giant nonlinear response from plasmonic metasurfaces coupled to intersubband transitions[J]. Nature, 511, 65-69(2014).
[54] Qian H L, Li S L, Chen C F et al. Large optical nonlinearity enabled by coupled metallic quantum wells[J]. Light: Science & Applications, 8, 13(2019).
[55] Sarma R, de Ceglia D, Nookala N et al. Broadband and efficient second-harmonic generation from a hybrid dielectric metasurface/semiconductor quantum-well structure[J]. ACS Photonics, 6, 1458-1465(2019).
[56] Ding Y F, Wei C R, Su H M et al. Second harmonic generation covering the entire visible range from a 2D material-plasmon hybrid metasurface[J]. Advanced Optical Materials, 9, 2100625(2021).
[57] Yang Y M, Wang W Y, Boulesbaa A et al. Nonlinear Fano-resonant dielectric metasurfaces[J]. Nano Letters, 15, 7388-7393(2015).
[58] Carletti L, Koshelev K, de Angelis C et al. Giant nonlinear response at the nanoscale driven by bound states in the continuum[J]. Physical Review Letters, 121, 033903(2018).
[59] Koshelev K, Tang Y T, Li K et al. Nonlinear metasurfaces governed by bound states in the continuum[J]. ACS Photonics, 6, 1639-1644(2019).
[60] Koshelev K, Kruk S, Melik-Gaykazyan E et al. Subwavelength dielectric resonators for nonlinear nanophotonics[J]. Science, 367, 288-292(2020).
[61] Zograf G, Koshelev K, Zalogina A et al. High-harmonic generation from resonant dielectric metasurfaces empowered by bound states in the continuum[J]. ACS Photonics, 9, 567-574(2022).
[62] Liu H Z, Guo C, Vampa G et al. Enhanced high-harmonic generation from an all-dielectric metasurface[J]. Nature Physics, 14, 1006-1010(2018).
[63] Hazen R M, Sholl D S. Chiral selection on inorganic crystalline surfaces[J]. Nature Materials, 2, 367-374(2003).
[64] Ernst K H. Molecular chirality at surfaces[J]. Physica Status Solidi (b), 249, 2057-2088(2012).
[65] Hentschel M, Schäferling M, Duan X Y et al. Chiral plasmonics[J]. Science Advances, 3, e1602735(2017).
[66] Mun J, Kim M, Yang Y et al. Electromagnetic chirality: from fundamentals to nontraditional chiroptical phenomena[J]. Light, Science & Applications, 9, 139(2020).
[67] Chen Y, Du W, Zhang Q et al. Multidimensional nanoscopic chiroptics[J]. Nature Reviews Physics, 4, 113-124(2022).
[68] Rose A, Powell D A, Shadrivov I V et al. Circular dichroism of four-wave mixing in nonlinear metamaterials[J]. Physical Review B, 88, 195148(2013).
[69] Rodrigues S P, Lan S F, Kang L et al. Nonlinear imaging and spectroscopy of chiral metamaterials[J]. Advanced Materials, 26, 6157-6162(2014).
[70] Chen S M, Zeuner F, Weismann M et al. Giant nonlinear optical activity of achiral origin in planar metasurfaces with quadratic and cubic nonlinearities[J]. Advanced Materials, 28, 2992-2999(2016).
[71] Kolkowski R, Petti L, Rippa M et al. Octupolar plasmonic meta-molecules for nonlinear chiral watermarking at subwavelength scale[J]. ACS Photonics, 2, 899-906(2015).
[72] Frizyuk K, Melik-Gaykazyan E, Choi J H et al. Nonlinear circular dichroism in Mie-resonant nanoparticle dimers[J]. Nano Letters, 21, 4381-4387(2021).
[73] Tang Y T, Liu Z G, Deng J H et al. Nano-Kirigami metasurface with giant nonlinear optical circular dichroism[J]. Laser & Photonics Reviews, 14, 2000085(2020).
[74] Lee K T, Kim B, Raju L et al. Enantiomer-selective molecular sensing in the nonlinear optical regime via upconverting chiral metamaterials[J]. Advanced Functional Materials, 32, 2208641(2022).
[75] Simon H J, Bloembergen N. Second-harmonic light generation in crystals with natural optical activity[J]. Physical Review, 171, 1104-1114(1968).
[76] Burns W K, Bloembergen N. Third-harmonic generation in absorbing media of cubic or isotropic symmetry[J]. Physical Review B, 4, 3437-3450(1971).
[77] Tang C L, Rabin H. Selection rules for circularly polarized waves in nonlinear optics[J]. Physical Review B, 3, 4025-4034(1971).
[78] Saito N, Xia P Y, Lu F M et al. Observation of selection rules for circularly polarized fields in high-harmonic generation from a crystalline solid[J]. Optica, 4, 1333-1336(2017).
[79] Konishi K, Higuchi T, Li J et al. Polarization-controlled circular second-harmonic generation from metal hole arrays with threefold rotational symmetry[J]. Physical Review Letters, 112, 135502(2014).
[80] Chen S M, Li G X, Zeuner F et al. Symmetry-selective third-harmonic generation from plasmonic metacrystals[J]. Physical Review Letters, 113, 033901(2014).
[81] McDonnell C, Deng J H, Sideris S et al. Functional THz emitters based on Pancharatnam-Berry phase nonlinear metasurfaces[J]. Nature Communications, 12, 30(2021).
[82] Li G X, Sartorello G, Chen S M et al. Spin and geometric phase control four-wave mixing from metasurfaces[J]. Laser & Photonics Reviews, 12, 1800034(2018).
[83] Segal N, Keren-Zur S, Hendler N et al. Controlling light with metamaterial-based nonlinear photonic crystals[J]. Nature Photonics, 9, 180-184(2015).
[84] Berry M V. Quantal phase factors accompanying adiabatic changes[J]. Proceedings of the Royal Society of London A, 392, 45-57(1984).
[85] Berry M V. The adiabatic phase and Pancharatnam′s phase for polarized light[J]. Journal of Modern Optics, 34, 1401-1407(1987).
[86] Pancharatnam S. Generalized theory of interference and its applications[J]. Proceedings of the Indian Academy of Sciences-Section A, 44, 398-417(1956).
[87] Tomita A, Chiao R Y. Observation of Berry′s topological phase by use of an optical fiber[J]. Physical Review Letters, 57, 937-940(1986).
[88] Haldane F D. Path dependence of the geometric rotation of polarization in optical fibers[J]. Optics Letters, 11, 730-732(1986).
[89] Bomzon Z, Biener G, Kleiner V et al. Space-variant Pancharatnam-Berry phase optical elements with computer-generated subwavelength gratings[J]. Optics Letters, 27, 1141-1143(2002).
[90] Cohen E, Larocque H, Bouchard F et al. Geometric phase from Aharonov-Bohm to Pancharatnam-Berry and beyond[J]. Nature Reviews Physics, 1, 437-449(2019).
[91] Xie X, Pu M B, Jin J J et al. Generalized Pancharatnam-Berry phase in rotationally symmetric meta-atoms[J]. Physical Review Letters, 126, 183902(2021).
[92] Cisowski C M, Götte J B, Franke-Arnold S. Colloquium: geometric phases of light: insights from fiber bundle theory[J]. Reviews of Modern Physics, 94, 031001(2022).
[93] Li G X, Chen S M, Pholchai N et al. Continuous control of the nonlinearity phase for harmonic generations[J]. Nature Materials, 14, 607-612(2015).
[94] Tymchenko M, Gomez-Diaz J S, Lee J et al. Gradient nonlinear Pancharatnam-Berry metasurfaces[J]. Physical Review Letters, 115, 207403(2015).
[95] Karnieli A, Li Y Y, Arie A. The geometric phase in nonlinear frequency conversion[J]. Frontiers of Physics, 17, 12301(2022).
[96] Wang L, Kruk S, Koshelev K et al. Nonlinear wavefront control with all-dielectric metasurfaces[J]. Nano Letters, 18, 3978-3984(2018).
[97] Gao Y S, Fan Y B, Wang Y J et al. Nonlinear holographic all-dielectric metasurfaces[J]. Nano Letters, 18, 8054-8061(2018).
[98] del Rocio Camacho-Morales M, Rocco D, Xu L et al. Infrared upconversion imaging in nonlinear metasurfaces[J]. Advanced Photonics, 3, 036002(2021).
[99] Schlickriede C, Waterman N, Reineke B et al. Imaging through nonlinear metalens using second harmonic generation[J]. Advanced Materials, 30, 1703843(2018).
[100] Li G X, Wu L, Li K F et al. Nonlinear metasurface for simultaneous control of spin and orbital angular momentum in second harmonic generation[J]. Nano Letters, 17, 7974-7979(2017).
[101] Chen S M, Li K, Deng J H et al. High-order nonlinear spin-orbit interaction on plasmonic metasurfaces[J]. Nano Letters, 20, 8549-8555(2020).
[102] Kruk S S, Wang L, Sain B et al. Asymmetric parametric generation of images with nonlinear dielectric metasurfaces[J]. Nature Photonics, 16, 561-565(2022).
[103] Almeida E, Bitton O, Prior Y. Nonlinear metamaterials for holography[J]. Nature Communications, 7, 12533(2016).
[104] Ye W M, Zeuner F, Li X et al. Spin and wavelength multiplexed nonlinear metasurface holography[J]. Nature Communications, 7, 11930(2016).
[105] Tang Y T, Intaravanne Y, Deng J H et al. Nonlinear vectorial metasurface for optical encryption[J]. Physical Review Applied, 12, 024028(2019).
[106] Wang M J, Li Y, Tang Y T et al. Nonlinear chiroptical holography with Pancharatnam-Berry phase controlled plasmonic metasurface[J]. Laser & Photonics Reviews, 16, 2200350(2022).
[107] Walter F, Li G X, Meier C et al. Ultrathin nonlinear metasurface for optical image encoding[J]. Nano Letters, 17, 3171-3175(2017).
[108] Mao N B, Deng J H, Zhang X C et al. Nonlinear diatomic metasurface for real and Fourier space image encoding[J]. Nano Letters, 20, 7463-7468(2020).
[109] Mao N B, Zhang G Q, Tang Y T et al. Nonlinear vectorial holography with quad-atom metasurfaces[J]. Proceedings of the National Academy of Sciences of the United States of America, 119, e2204418119(2022).
[110] Wang H, He Y M, Chung T H et al. Towards optimal single-photon sources from polarized microcavities[J]. Nature Photonics, 13, 770-775(2019).
[111] Vaskin A, Kolkowski R, Koenderink A F et al. Light-emitting metasurfaces[J]. Nanophotonics, 8, 1151-1198(2019).
[112] Kan Y H, Andersen S K H, Ding F et al. Metasurface-enabled generation of circularly polarized single photons[J]. Advanced Materials, 32, e1907832(2020).
[113] Chen B, Wei Y M, Zhao T M et al. Bright solid-state sources for single photons with orbital angular momentum[J]. Nature Nanotechnology, 16, 302-307(2021).
[114] Stav T, Faerman A, Maguid E et al. Quantum entanglement of the spin and orbital angular momentum of photons using metamaterials[J]. Science, 361, 1101-1104(2018).
[115] Wang K, Titchener J G, Kruk S S et al. Quantum metasurface for multiphoton interference and state reconstruction[J]. Science, 361, 1104-1108(2018).
[116] Georgi P, Massaro M, Luo K H et al. Metasurface interferometry toward quantum sensors[J]. Light: Science & Applications, 8, 70(2019).
[117] Jha P K, Ni X J, Wu C et al. Metasurface-enabled remote quantum interference[J]. Physical Review Letters, 115, 025501(2015).
[118] Li Q W, Bao W, Nie Z Y et al. A non-unitary metasurface enables continuous control of quantum photon-photon interactions from bosonic to fermionic[J]. Nature Photonics, 15, 267-271(2021).
[119] Kwiat P G, Mattle K, Weinfurter H et al. New high-intensity source of polarization-entangled photon pairs[J]. Physical Review Letters, 75, 4337-4341(1995).
[120] Liu J, Su R B, Wei Y M et al. A solid-state source of strongly entangled photon pairs with high brightness and indistinguishability[J]. Nature Nanotechnology, 14, 586-593(2019).
[121] Ming Y, Zhang W, Tang J et al. Photonic entanglement based on nonlinear metamaterials[J]. Laser & Photonics Reviews, 14, 1900146(2020).
[122] Marino G, Solntsev A S, Xu L et al. Spontaneous photon-pair generation from a dielectric nanoantenna[J]. Optica, 6, 1416-1422(2019).
[123] Santiago-Cruz T, Gennaro S D, Mitrofanov O et al. Resonant metasurfaces for generating complex quantum states[J]. Science, 377, 991-995(2022).
[124] Li L, Liu Z X, Ren X F et al. Metalens-array-based high-dimensional and multiphoton quantum source[J]. Science, 368, 1487-1490(2020).
[125] Zhang J H, Ma J Y, Parry M et al. Spatially entangled photon pairs from lithium niobate nonlocal metasurfaces[J]. Science Advances, 8, eabq4240(2022).
[126] Kort-Kamp W J M, Azad A K, Dalvit D A R. Space-time quantum metasurfaces[J]. Physical Review Letters, 127, 043603(2021).
[127] Solntsev A S, Agarwal G S, Kivshar Y S. Metasurfaces for quantum photonics[J]. Nature Photonics, 15, 327-336(2021).
[128] Li L, Cheng Y, Zhu S N. Metasurface-based quantum optics[J]. Physics, 50, 308-316(2021).
[129] Song H J, Ajito K, Wakatsuki A et al. Terahertz wireless communication link at 300 GHz[C], 42-45(2010).
[130] Burford N M, El-Shenawee M O. Review of terahertz photoconductive antenna technology[J]. Optical Engineering, 56, 010901(2017).
[131] Tan P, Huang J, Liu K F et al. Terahertz radiation sources based on free electron lasers and their applications[J]. Science China Information Sciences, 55, 1-15(2012).
[132] Yeh K L, Hoffmann M C, Hebling J et al. Generation of 10 μJ ultrashort terahertz pulses by optical rectification[J]. Applied Physics Letters, 90, 171121(2007).
[133] Grady N K, Heyes J E, Chowdhury D R et al. Terahertz metamaterials for linear polarization conversion and anomalous refraction[J]. Science, 340, 1304-1307(2013).
[134] Jia M, Wang Z, Li H T et al. Efficient manipulations of circularly polarized terahertz waves with transmissive metasurfaces[J]. Light: Science & Applications, 8, 16(2019).
[135] Li J S, Yao J Q. Manipulation of terahertz wave using coding Pancharatnam-Berry phase metasurface[J]. IEEE Photonics Journal, 10, 5900512(2018).
[136] Li X N, Zhou L, Zhao G Z. Terahertz vortex beam generation based on reflective metasurface[J]. Acta Physica Sinica, 68, 238101(2019).
[137] Tian H W, Shen H Y, Zhang X G et al. Terahertz metasurfaces: toward multifunctional and programmable wave manipulation[J]. Frontiers in Physics, 8, 584077(2020).
[138] Luo L, Chatzakis I, Wang J G et al. Broadband terahertz generation from metamaterials[J]. Nature Communications, 5, 3055(2014).
[139] Keren-Zur S, Tal M, Fleischer S et al. Generation of spatiotemporally tailored terahertz wavepackets by nonlinear metasurfaces[J]. Nature Communications, 10, 1778(2019).
[140] Minerbi E, Keren-Zur S, Ellenbogen T. Nonlinear metasurface Fresnel zone plates for terahertz generation and manipulation[J]. Nano Letters, 19, 6072-6077(2019).
[141] McDonnell C, Deng J H, Sideris S et al. Terahertz metagrating emitters with beam steering and full linear polarization control[J]. Nano Letters, 22, 2603-2610(2022).
[142] Zdagkas A, McDonnell C, Deng J H et al. Observation of toroidal pulses of light[J]. Nature Photonics, 16, 523-528(2022).
[143] Lu Y C, Feng X, Wang Q W et al. Integrated terahertz generator-manipulators using epsilon-near-zero-hybrid nonlinear metasurfaces[J]. Nano Letters, 21, 7699-7707(2021).
[144] Mao N B, Tang Y T, Jin M K et al. Nonlinear wavefront engineering with metasurface decorated quartz crystal[J]. Nanophotonics, 11, 797-803(2022).
[145] Timurdogan E, Poulton C V, Byrd M J et al. Electric field-induced second-order nonlinear optical effects in silicon waveguides[J]. Nature Photonics, 11, 200-206(2017).
[146] Chen S M, Li K F, Li G X et al. Gigantic electric-field-induced second harmonic generation from an organic conjugated polymer enhanced by a band-edge effect[J]. Light: Science & Applications, 8, 17(2019).
Get Citation
Copy Citation Text
Yutao Tang, Xuecai Zhang, Zixian Hu, Yue Hu, Xuan Liu, Guixin Li. Nonlinear Photonic Metasurfaces: Fundamentals and Applications[J]. Acta Optica Sinica, 2023, 43(8): 0822002
Category: Optical Design and Fabrication
Received: Jan. 2, 2023
Accepted: Feb. 10, 2023
Published Online: Apr. 6, 2023
The Author Email: Li Guixin (ligx@sustech.edu.cn)