Acta Optica Sinica, Volume. 43, Issue 8, 0822002(2023)

Nonlinear Photonic Metasurfaces: Fundamentals and Applications

Yutao Tang, Xuecai Zhang, Zixian Hu, Yue Hu, Xuan Liu, and Guixin Li*
Author Affiliations
  • Department of Materials Science and Engineering, College of Engineering, Southern University of Science and Technology, Shenzhen 518055, Guangdong, China
  • show less
    Figures & Tables(9)
    Quasi-phase matching and nonlinear photonic crystals. (a) Quasi-phase matching conditions for second harmonic generation in one-dimensional periodic polarized nonlinear photonic crystal; (b) quasi-phase matching conditions for second harmonic generation and third harmonic generation in one-dimensional quasi-periodic polarized nonlinear photonic crystal[14]; (c) three-dimensional nonlinear photonic crystal fabricated in LN crystal[19]; (d) three-dimensional nonlinear photonic crystal fabricated in BCT crystal[20]
    Nonlinear photonic metasurfaces. (a) Magnetic resonance metamaterial for Raman signal enhancement[44]; (b) second harmonic generation on central inversion symmetry broken U-shaped meta-atoms[45]; (c) meta-atoms with double resonance properties at fundamental and second harmonic frequencies[47]; (d) plasmonic-ENZ hybrid metasurface for second harmonic generation[52]; (e) metal-quantum well hybrid nonlinear metasurface[54]; (f) metal-two-dimensional material hybrid nonlinear metasurface[56]; (g) high harmonic generation from dielectric metasurface[61]
    Chiral nonlinear photonic metasurfaces. (a) Mirror symmetry broken C3 and C4 meta-atoms for second harmonic generation and third harmonic generation with strong CD [70]; (b) metasurface and nonlinear chiral "watermark"[71]; (c) strong CD of second harmonic generation from three-dimensional nano-kirigami metasurface[73]; (d) chiral molecule sensing based on up-conversion photoluminescence[74]
    Nonlinear photonic geometric phase. (a) Binary phase control of 0 and π in second harmonic generation by U-shaped meta-atoms[83]; (b) geometric phases of third harmonic generation by C2 and C4 meta-atoms[93]; (c) geometric phase control of second harmonic generation by U-shaped meta-atoms[94]
    Nonlinear photonic metasurfaces for wavefront engineering. (a) Third harmonic generation beam steering and vortex beam generation based on dielectric metasurface[96]; (b) generation of second harmonic generation optical vortex on plasmonic metasurface[100]; (c) polarization-multiplexed third harmonic generation holography[103]; (d) frequency-polarization multiplexed multi-channel holography with U-shaped meta-atoms[104]; (e) second harmonic generation vectorial beam and image encoding based on C3 meta-atoms[105]; (f) diatomic nonlinear photonic metasurface for encryption of second harmonic generation image[107]; (g) diatomic metasurface for encryption of second harmonic generation image in both real and Fourier spaces[108]; (h) quad-atom metasurface for nonlinear vectorial holography[109]
    Nonlinear photonic metasurfaces for quantum information processing. (a) Circular Bragg resonator integrated with quantum dot for generating entangled photon pairs[120]; (b) nonlinear plasmonic metasurface for generating entangled photon pairs with orbital angular momentum[121]; (c) photon pair source based on dielectric metasurface122]; (d) multi-frequency entangled source based on dielectric metasurface[123]; (e) high-dimensional entangled source realized by combining metalens array and BBO crystal[124]; (f) meta-gratings loaded LN thin film for generating entangled photon pairs with high efficiency[125]
    Terahertz source based on nonlinear metasurface. (a) Plasmonic metasurface for terahertz generation and focusing[140]; (b) geometric phase metasurface terahertz source based on metallic C3 meta-atoms[81]; (c) geometric phase metasurface terahertz source based on U-shaped meta-atoms[143]
    • Table 1. Phase-matching conditions for realizing sum frequency generation (ω3=ω1+ω2) in uniaxial crystals[5]

      View table

      Table 1. Phase-matching conditions for realizing sum frequency generation (ω3=ω1+ω2) in uniaxial crystals[5]

      TypePositive uniaxial(ne > noNegative uniaxial(ne < no
      In3oω3=n1eω1+n2eω2n3eω3=n1oω1+n2oω2
      IIn3oω3=n1oω1+n2eω2n3eω3=n1eω1+n2oω2
    • Table 2. Geometric phase in harmonic generation

      View table

      Table 2. Geometric phase in harmonic generation

      Harmonic orderSign of harmonicC1C2C3C4
      n=1+××××
      -2θσ2θσ××
      n=2+θσ×××
      -3θσ×3θσ×
      n=3+2θσ2θσ××
      -4θσ4θσ×4θσ
      n=4+3θσ×3θσ×
      -5θσ×××
      n=5+4θσ4θσ×4θσ
      -6θσ6θσ6θσ×
    Tools

    Get Citation

    Copy Citation Text

    Yutao Tang, Xuecai Zhang, Zixian Hu, Yue Hu, Xuan Liu, Guixin Li. Nonlinear Photonic Metasurfaces: Fundamentals and Applications[J]. Acta Optica Sinica, 2023, 43(8): 0822002

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Optical Design and Fabrication

    Received: Jan. 2, 2023

    Accepted: Feb. 10, 2023

    Published Online: Apr. 6, 2023

    The Author Email: Li Guixin (ligx@sustech.edu.cn)

    DOI:10.3788/AOS230428

    Topics