Journal of Semiconductors, Volume. 40, Issue 3, 032701(2019)
Photovoltaic properties of Cu2O-based heterojunction solar cells using n-type oxide semiconductor nano thin films prepared by low damage magnetron sputtering method
[1] N Asima, K Sopiana, S Ahmadib et al. A review on the role of materials science in solar cells. Renew Sustain Energy Rev, 16, 5834(2012).
[2] A E Rakhshani. Preparation, characteristics and photovoltaic properties of cuprous oxide – a review. Solid-State Electron, 29, 7(1986).
[3] G P Pollack, D Trivichi. Photoelectric properties of cuprous oxide. J Appl Phys, 46, 163(1975).
[4] J Herion, E A Niekisch, G Scharl. Investigation of metal oxide/cuprous oxide heterojunction solar cells. Sol Energy Mater, 4, 101(1980).
[5] L Papadimitriou, N A Economou, D Trivich. Heterojunction solar cells on cuprous oxide. Sol Cells, 3, 73(1981).
[6] L C Olsen, F W Addis, W Miller. Experimental and theoretical studies of Cu2O solar cells. Sol Cells, 7, 247(1982).
[7] W M Sears, E Fortin, J B Webb. Indium tin oxide/Cu2O photovoltaic cells. Thin Solid Films, 103, 303(1983).
[8] B P Rai. Cu2O solar cells: A review. Sol Cells, 25, 265(1988).
[9] R N Briskman. A study of electrodeposited cuprous oxide photovoltaic cells. Sol Energy Mater Sol Cells, 27, 361(1992).
[10] T Minami, Y Nishi, T Miyata et al. High-efficiency oxide solar cells with ZnO/Cu2O heterojunction fabricated on thermally oxidized Cu2O sheets. Appl Phys Express, 4, 062301(2011).
[11] Y S Lee, J Heo, S C Siah et al. Ultrathin amorphous zinc-tin-oxide buffer layer for enhancing heterojunction interface quality in metal-oxide solar cells. Energy Environ Sci, 6, 2112(2013).
[12] T Minami, Y Nishi, T Miyata. High-efficiency Cu2O-based heterojunction solar cells fabricated using a Ga2O3 thin film as n-type layer. Appl Phys Express, 6, 044101(2013).
[13] S W Lee, Y S Lee, J Heo et al. Improved Cu2O-based solar cells using atomic layer deposition to control the Cu oxidation state at the p–n junction. Adv Energy Mater, 4, 1301916(2014).
[14] Y S Lee, D Chua, R E Brandt et al. Atomic layer deposited gallium oxide buffer layer enables 1.2 V open-circuit voltage in cuprous oxide solar cells. Adv Mater, 26, 4704(2014).
[15] T Minami, Y Nishi, T Miyata. Heterojunction solar cell with 6% efficiency based on an n-type aluminum–gallium–oxide thin film and p-type sodium-doped Cu2O sheet. Appl Phys Express, 8, 022301(2015).
[16] Y Ievskaya, R L Z Hoye, A Sadhanala et al. Fabrication of ZnO/Cu2O heterojunctions in atmospheric conditions: Improved interface quality and solar cell performanceSol. Energy Mater Sol Cells, 135, 43(2015).
[17] R L Z Hoye, R E Brandt, Y Ievskaya et al. Perspective: Maintaining surface-phase purity is key to efficient open air fabricated cuprous oxide solar cells. APL Mater, 3, 020901(2015).
[18] T Minami, T Miyata, Y Nishi. Efficiency improvement of Cu2O-based heterojunction solar cells fabricated using thermally oxidized copper sheets. Thin Solid Films, 559, 105(2014).
[19] T Minami, T Miyata, Y Nishi. Cu2O-based heterojunction solar cells with an Al-doped ZnO/oxide semiconductor/thermally oxidized Cu2O sheet structure. Sol Energy, 105, 206(2014).
[20] T Minami, Y Nishi, T Miyata. Cu2O-based solar cells using oxide semiconductors. J Semicond, 37, 014002(2016).
[21]
[22] T Minami, Y Nishi, T Miyata. Impact of incorporating sodium into polycrystalline p-type Cu2O for heterojunction solar cell applications. Appl Phys Lett, 105, 212104(2014).
Get Citation
Copy Citation Text
Toshihiro Miyata, Kyosuke Watanabe, Hiroki Tokunaga, Tadatsugu Minami. Photovoltaic properties of Cu2O-based heterojunction solar cells using n-type oxide semiconductor nano thin films prepared by low damage magnetron sputtering method[J]. Journal of Semiconductors, 2019, 40(3): 032701
Category: Articles
Received: Jun. 15, 2018
Accepted: --
Published Online: Sep. 18, 2021
The Author Email: