Optics and Precision Engineering, Volume. 32, Issue 12, 1902(2024)

Cascade residual-optimized image super-resolution reconstruction in Transformer network

Jianpu LIN1,2, Zhencheng WU1,2, Kunfu WANG1, Zhixian LIN1,2,3, Tailiang GUO2,3, and Shanling LIN1,2、*
Author Affiliations
  • 1School of Advanced Manufacturing, Fuzhou University, Quanzhou362252, China
  • 2Fujian Science and Technology Innovation Laboratory for Optoelectronic Information of China, Fuzhou350116, China
  • 3College of Physics and Telecommunication Engineering, Fuzhou University, Fuzhou50116, China
  • show less
    References(34)

    [1] [1] 温剑, 邵剑飞, 刘杰, 等. 多维注意力机制与选择性特征融合的图像超分辨率重建[J]. 光学 精密工程, 2023, 31(17): 2584-2597. doi: 10.37188/ope.20233117.2584WENJ, SHAOJ F, LIUJ, et al. Multidimensional attention mechanism and selective feature fusion for image super-resolution reconstruction[J]. Opt. Precision Eng., 2023, 31(17): 2584-2597.(in Chinese). doi: 10.37188/ope.20233117.2584

    [2] [2] 陈豪, 夏振平, 程成, 等. 基于Transformer-CNN的轻量级图像超分辨率重建网络[J]. 计算机应用, 2024, 44(1): 292-299.CHENH, XIAZ P, CHENGC, et al. Lightweight image super-resolution reconstruction network based on Transformer-CNN[J]. Journal of Computer Applications, 2024, 44(1): 292-299.(in Chinese)

    [3] [3] 寇旗旗, 李超, 程德强, 等. 基于注意力和宽激活密集残差网络的图像超分辨率重建[J]. 光学 精密工程, 2023, 31(15): 2273-2286. doi: 10.37188/ope.20233115.2273KOUQ Q, LIC, CHENGD Q, et al. Image super-resolution reconstruction based on attention and wide-activated dense residual network[J]. Opt. Precision Eng., 2023, 31(15): 2273-2286.(in Chinese). doi: 10.37188/ope.20233115.2273

    [4] DONG C, LOY C C, HE K et al. Image super-resolution using deep convolutional networks[J]. IEEE Trans Pattern Anal Mach Intell, 38, 295-307(2016).

    [6] SUN L, DONG J X, TANG J H et al. Spatially-adaptive Feature Modulation for Efficient Image Super-resolution[C], 13144-13153(2023).

    [7] TIAN C W, ZHANG X Y, ZHANG Q et al. Image super-resolution via dynamic network[J]. CAAI Transactions on Intelligence Technology(2023).

    [8] HE K M, ZHANG X Y, REN S Q et al. Deep residual learning for image recognition[C], 770-778(2016).

    [9] LIU Z, LIN Y T, CAO Y et al. Swin transformer: hierarchical vision transformer using shifted windows[C], 9992-10002(2021).

    [10] LIANG J Y, CAO J Z, SUN G L et al. SwinIR: image restoration using swin transformer[C], 1833-1844(2021).

    [11] DING M Y, XIAO B, CODELLA N et al. DaViT: dual attention vision transformers[C], 74-92(2022).

    [12] ZAMIR S W, ARORA A, KHAN S et al. Restormer: efficient transformer for high-resolution image restoration[C], 5718-5729(2022).

    [13] RONNEBERGER O, FISCHER P, BROX T. U-net Convolutional Networks for Biomedical Image Segmentation[M]. Lecture Notes in Computer Science, 234-241(2015).

    [14] HU J, SHEN L, SUN G. Squeeze-and-excitation networks[C], 7132-7141(2018).

    [15] PARK J, LEE J Y et al. CBAM: Convolutional block attention module[C], 3-19(2018).

    [17] SZEGEDY C, LIU W, JIA Y Q et al. Going deeper with convolutions[C], 1-9(2015).

    [18] HUANG G, LIU Z, VAN DER MAATEN L et al. Densely connected convolutional networks[C], 2261-2269(2017).

    [19] SHI W Z, CABALLERO J, HUSZÁR F et al. Real-time single image and video super-resolution using an efficient sub-pixel convolutional neural network[C], 1874-1883(2016).

    [20] AGUSTSSON E, TIMOFTE R. NTIRE 2017 Challenge on single image super-resolution: dataset and study[C], 21, 126-135(2017).

    [21] WANG Z, BOVIK A C, SHEIKH H R et al. Image quality assessment: from error visibility to structural similarity[J]. IEEE Transactions on Image Processing, 13, 600-612(2004).

    [22] KANG B, SOHN K A. Fast, Accurate, and lightweight super-resolution with cascading residual network[C], 256-272(2018).

    [23] LAI W S, HUANG J B, AHUJA N et al. Deep laplacian pyramid networks for fast and accurate super-resolution[C], 5835-5843(2017).

    [24] TAI Y, YANG J, LIU X M et al. MemNet: a persistent memory network for image restoration[C], 4549-4557(2017).

    [25] HUI Z, GAO X B, YANG Y C et al. Lightweight image super-resolution with information multi-distillation network[C], 2024-2032(2019).

    [26] KONG F Y, LI M X, LIU S W et al. Residual local feature network for efficient super-resolution[C], 765-775(2022).

    [27] LU Z S, LI J C, LIU H et al. Transformer for single image super-resolution[C], 456-465(2022).

    [29] DOSOVITSKIY A, BEYER L, KOLESNIKOV A et al. An image is worth 16x16 words: transformers for image recognition at scale[J]. ArXiv e-Prints(2020).

    [30] HAN K, XIAO A, WU E et al. Transformer in transformer[C], 34, 15908-15919(2021).

    [31] LIU T C, LEE K A, WANG Q Q et al. Golden gemini is all you need: finding the sweet spots for speaker verification[J]. IEEE/ACM Transactions on Audio, Speech, and Language Processing, 32, 2324-2337(2023).

    [32] TIAN C W, ZHENG M H, ZUO W M et al. A cross Transformer for image denoising[J]. Information Fusion, 102, 102043(2024).

    [33] CHEN Z, ZHANG Y L, GU J J et al. Dual aggregation transformer for image super-resolution[C], 12278-12287(2023).

    [34] ZHANG Y L, LI K P, LI K et al. Image super-resolution using very deep residual channel attention networks[C], 294-310(2018).

    Tools

    Get Citation

    Copy Citation Text

    Jianpu LIN, Zhencheng WU, Kunfu WANG, Zhixian LIN, Tailiang GUO, Shanling LIN. Cascade residual-optimized image super-resolution reconstruction in Transformer network[J]. Optics and Precision Engineering, 2024, 32(12): 1902

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category:

    Received: Dec. 13, 2023

    Accepted: --

    Published Online: Aug. 28, 2024

    The Author Email: Shanling LIN (sllin@fzu.edu.cn)

    DOI:10.37188/OPE.20243212.1902

    Topics