Optics and Precision Engineering, Volume. 32, Issue 12, 1902(2024)

Cascade residual-optimized image super-resolution reconstruction in Transformer network

Jianpu LIN1...2, Zhencheng WU1,2, Kunfu WANG1, Zhixian LIN1,2,3, Tailiang GUO2,3, and Shanling LIN12,* |Show fewer author(s)
Author Affiliations
  • 1School of Advanced Manufacturing, Fuzhou University, Quanzhou362252, China
  • 2Fujian Science and Technology Innovation Laboratory for Optoelectronic Information of China, Fuzhou350116, China
  • 3College of Physics and Telecommunication Engineering, Fuzhou University, Fuzhou50116, China
  • show less
    Figures & Tables(13)
    Cascaded residual super resolution network
    Space and channel combined CR-Transformer module
    Cascade perceptual structure
    Architectural image reconstruction effect (×4)
    Animal image reconstruction effect (×4)
    Letter image reconstruction effect (×4)
    Real scene image reconstruction effect (×4)
    • Table 1. Simulation environment and parameter setting

      View table
      View in Article

      Table 1. Simulation environment and parameter setting

      仿真环境参数值
      中央处理器CPUIntel(R) Xeon(R) Silver 4210R
      GPUQuadro RTX 5000
      内存16 GB
      训练框架Pytorch1.12.1
      初始学习率0.000 2
      优化器Adam
      迭代次数Epoch3 000
    • Table 2. Validity verification of different modules

      View table
      View in Article

      Table 2. Validity verification of different modules

      模型

      编号

      全局

      级联

      CA

      感知

      模块

      局部

      级联

      PSNR/SSIM
      Baseline××××32.14/0.893 9
      1×××32.16/0.893 6
      2××32.27/0.894 7
      3×32.37/0.896 2
      ours32.46/0.897 3
    • Table 3. Network performance with different number of modules

      View table
      View in Article

      Table 3. Network performance with different number of modules

      名称模块数参数量/103浮点数计算量/109PSNR/SSIM
      CR-Transformer21,14112232.31/0.895 4
      31,67516532.46/0.897 3
      42,21420832.39/0.896 5
      52,77625132.37/0.896 2
    • Table 4. Comparison of PSNR/SSIM values of different algorithms under 2× reconstruction

      View table
      View in Article

      Table 4. Comparison of PSNR/SSIM values of different algorithms under 2× reconstruction

      尺度方法Set5Set14BSD100Urban100Manga109
      PSNRSSIMPSNRSSIMPSNRSSIMPSNRSSIMPSNRSSIM
      ×2Bicubic33.660.929 930.240.868 829.560.843 126.880.840 330.800.933 9
      SRCNN[436.660.954 232.450.906 731.360.887 929.500.894 635.600.966 3
      CFSR[538.070.960 733.740.919 232.240.900 532.280.930 039.000.977 8
      SAFMN[638.000.960 533.540.917 732.160.899 531.840.925 638.710.977 1
      DSRNet[737.610.958 433.300.914 531.960.896 531.410.920 9--
      LapSRN[2337.520.959 132.990.912 431.800.895 230.410.910 337.270.974 0
      MemNet[2437.780.959 733.280.914 232.080.897 831.310.919 537.720.974 0
      CARN[2237.760.959 033.520.916 632.090.897 831.920.925 638.360.976 5
      IMDN[2538.000.960 533.630.917 732.190.899 632.170.928 338.880.977 4
      RLFN[2638.070.960 733.720.918 732.220.900 032.330.929 9--
      ESRT[27]----------
      本文38.070.960 133.890.919 932.230.899 732.760.942 339.050.977 2
    • Table 5. Comparison of PSNR/SSIM values of different algorithms under 3× reconstruction

      View table
      View in Article

      Table 5. Comparison of PSNR/SSIM values of different algorithms under 3× reconstruction

      尺度方法Set5Set14BSD100Urban100Manga109
      PSNRSSIMPSNRSSIMPSNRSSIMPSNRSSIMPSNRSSIM
      ×3Bicubic30.390.868 227.550.774 227.210.738 524.460.734 926.950.855 6
      SRCNN[432.750.909 029.300.821 528.410.786 326.240.798 930.480.911 7
      CFSR[534.500.927 930.440.843 729.160.806 628.290.855 333.860.946 2
      SAFMN[634.340.926 730.330.841 829.080.804 827.950.847 433.520.943 7
      DSRNet[733.920.922 730.100.837 828.900.800 327.630.840 2--
      LapSRN[2333.810.922 029.790.832 528.820.798 027.070.827 532.210.935 0
      MemNet[2434.090.924 830.000.835 028.960.800 127.560.837 632.510.936 9
      CARN[2234.290.925 530.290.840 729.060.803 428.060.849 333.500.944 0
      IMDN[2534.360.927 030.320.841 729.090.804 628.170.851 933.610.944 5
      RLFN[26]----------
      ESRT[27]34.420.926 830.430.843 329.150.806 328.460.857 433.950.945 5
      本文34.460.927 330.490.844 129.150.806 528.090.858 133.790.945 4
    • Table 6. Comparison of PSNR/SSIM values of different algorithms under 4× reconstruction

      View table
      View in Article

      Table 6. Comparison of PSNR/SSIM values of different algorithms under 4× reconstruction

      尺度方法Set5Set14BSD100Urban100Manga109
      PSNRSSIMPSNRSSIMPSNRSSIMPSNRSSIMPSNRSSIM
      ×4Bicubic28.420.810 426.000.702 725.960.667 523.140.657 724.890.786 6
      SRCNN[430.480.862 827.500.751 326.900.710 124.520.722 127.580.855 5
      CFSR[532.330.896 428.730.784 227.630.738 126.210.789 730.720.911 1
      SAFMN[632.180.894 828.600.781 327.580.735 925.970.780 930.430.906 3
      DSRNet[731.710.887 428.380.773 727.430.730 325.650.769 3--
      LapSRN[2331.540.885 228.090.770 027.320.727 525.210.756 229.090.890 0
      MemNet[2431.740.889 328.260.772 327.400.728 125.500.763 029.420.894 2
      CARN[22]32.130.893 728.600.780 627.580.734 926.070.783 730.470.908 4
      IMDN[25]32.210.894 828.580.781 127.560.735 326.040.783 830.450.907 5
      RLFN[26]32.240.895 228.620.781 327.600.736 426.170.787 7--
      ESRT[27]32.190.894 728.690.783 327.690.737 926.390.796 230.750.910 0
      本文32.460.897 328.790.785 627.690.740 425.850.782 731.010.914 4
    Tools

    Get Citation

    Copy Citation Text

    Jianpu LIN, Zhencheng WU, Kunfu WANG, Zhixian LIN, Tailiang GUO, Shanling LIN. Cascade residual-optimized image super-resolution reconstruction in Transformer network[J]. Optics and Precision Engineering, 2024, 32(12): 1902

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category:

    Received: Dec. 13, 2023

    Accepted: --

    Published Online: Aug. 28, 2024

    The Author Email: Shanling LIN (sllin@fzu.edu.cn)

    DOI:10.37188/OPE.20243212.1902

    Topics