Journal of Infrared and Millimeter Waves, Volume. 41, Issue 6, 1102(2022)
Light-weight infrared small target detection combining cross-scale feature fusion with bottleneck attention module
[1] Rivest J F, Fortin R. Detection of dim targets in digital infrared imagery by morphological image processing[J]. Optical Engineering, 35, 1886-1893(1996).
[2] Deshpande S D, Er M H, Venkateswarlu R et al. Max-mean and max-median filters for detection of small targets[C], 3809, 74-83(1999).
[3] Wang P, Tian J W, Gao C Q. Infrared small target detection using directional highpass filters based on LS-SVM[J]. Electronics letters, 45, 156-158(2009).
[4] Chen C L P, Li H, Wei Y et al. A local contrast method for small infrared target detection[J]. IEEE transactions on geoscience and remote sensing, 52, 574-581(2013).
[5] Gao C, Meng D, Yang Y et al. Infrared patch-image model for small target detection in a single image[J]. IEEE transactions on image processing, 22, 4996-5009(2013).
[6] Dai Y, Wu Y. Reweighted infrared patch-tensor model with both nonlocal and local priors for single-frame small target detection[J]. IEEE journal of selected topics in applied earth observations and remote sensing, 10, 3752-3767(2017).
[7] Sun Y, Yang J, An W. Infrared dim and small target detection via multiple subspace learning and spatial-temporal patch-tensor model[J]. IEEE Transactions on Geoscience and Remote Sensing, 59, 3737-3752(2020).
[8] Liu M, Du H, Zhao Y et al. Image small target detection based on deep learning with SNR controlled sample generation[J]. Current Trends in Computer Science and Mechanical Automation, 1, 211-220(2017).
[9] McIntosh B, Venkataramanan S, Mahalanobis A. Infrared target detection in cluttered environments by maximization of a target to clutter ratio (tcr) metric using a convolutional neural network[J]. IEEE Transactions on Aerospace and Electronic Systems, 57, 485-496(2020).
[10] Ren S, He K, Girshick R et al. Faster r-cnn: Towards real-time object detection with region proposal networks[J]. Advances in neural information processing systems, 28-40(2015).
[11] Redmon J, Farhadi A. Yolov3: An incremental improvement(2018).
[12] Dai Y, Wu Y, Zhou F et al. Asymmetric contextual modulation for infrared small target detection[C], 950-959(2021).
[13] Dai Y, Wu Y, Zhou F et al. Attentional local contrast networks for infrared small target detection[J]. IEEE Transactions on Geoscience and Remote Sensing, 59, 9813-9824(2021).
[14] Wang H, Zhou L, Wang L. Miss detection vs. false alarm: Adversarial learning for small object segmentation in infrared images[C], 8509-8518(2019).
[15] Li B, Xiao C, Wang L et al. Dense nested attention network for infrared small target detection[J]. IEEE Transactions on Image Processing(2022).
[16] Huang H, Lin L, Tong R et al. Unet 3+: A full-scale connected unet for medical image segmentation[C], 1055-1059(2020).
[17] Park J, Woo S, Lee J Y et al. Bam: Bottleneck attention module[J](2018).
[18] Wu K, Otoo E, Shoshani A. Optimizing connected component labeling algorithms[C], 5747, 1965-1976(2005).
[19] Simonyan K, Zisserman A. Very deep convolutional networks for large-scale image recognition[J](2014).
[20] He K, Zhang X, Ren S et al. Deep residual learning for image recognition[C], 770-778(2016).
[21] Duchi J, Hazan E, Singer Y. Adaptive subgradient methods for online learning and stochastic optimization[J]. Journal of machine learning research, 12, 102-110(2011).
[22] Deshpande S D, Er M H, Venkateswarlu R et al. Max-mean and max-median filters for detection of small targets[C], 3809, 74-83(1999).
[23] Paszke A, Gross S, Massa F et al. Pytorch: An imperative style, high-performance deep learning library[J]. Advances in neural information processing systems, 32, 190-211(2019).
[24] Han J, Moradi S, Faramarzi I et al. A local contrast method for infrared small-target detection utilizing a tri-layer window[J]. IEEE Geoscience and Remote Sensing Letters, 17, 1822-1826(2019).
Get Citation
Copy Citation Text
Zai-Ping LIN, Bo-Yang LI, Miao LI, Long-Guang WANG, Tian-Hao WU, Yi-Hang LUO, Chao XIAO, Ruo-Jing LI, Wei An. Light-weight infrared small target detection combining cross-scale feature fusion with bottleneck attention module[J]. Journal of Infrared and Millimeter Waves, 2022, 41(6): 1102
Category: Research Articles
Received: Jun. 13, 2022
Accepted: --
Published Online: Feb. 6, 2023
The Author Email: Zai-Ping LIN (linzaiping@sina.com)