Journal of Infrared and Millimeter Waves, Volume. 41, Issue 6, 1102(2022)

Light-weight infrared small target detection combining cross-scale feature fusion with bottleneck attention module

Zai-Ping LIN*, Bo-Yang LI, Miao LI, Long-Guang WANG, Tian-Hao WU, Yi-Hang LUO, Chao XIAO, Ruo-Jing LI, and Wei An
Author Affiliations
  • College of electronic science and technology,National University of Defense Technology,Changsha 410073,China
  • show less
    Figures & Tables(15)
    The main challenges of infrared small target detection.
    An illustration of the proposed light-weighted infrared small target detection network
    The network of classic U-shape and our proposed LIRDNet
    Bottleneck attention module
    Samples of eight connected neighborhood clustering module. If the eight neighborhoods of two candidate points have intersection area,they are identified as the same target ID.
    Examples of(a)original images and corresponding qualitative comparison results on(b)Tophat,(c)IPI,(d)RIPT,(e)ACM,(f)DNANet,(g)LIRDNet,(h)ground truth masks.
    Examples of(a)original images and corresponding 3D visualization results on(b)Tophat,(c)IPI,(d)RIPT,(e)ACM,(f)DNANet,(g)LIRDNet,(h)ground truth masks.
    The ROC curve of our proposed LIRDNet under different signal-clutter-ratio(SCR)values(a)SCR<3,(b)3<SCR<6,(c)6<SCR.
    Visualization map of our proposed LIRDNet and backbone network ResUnet on different convolutional layers
    • Table 1. Number of model parameters for LIRDNet and the corresponding size of input and output feature map

      View table
      View in Article

      Table 1. Number of model parameters for LIRDNet and the corresponding size of input and output feature map

      编号滤波器数量输入尺寸输出尺寸
      预处理-1,256,2563,256,256
      Fde0,083,256,2568,256,256
      BAM0,0-8,256,2568,256,256
      Fde1,0168,128,12816,128,128
      BAM1,0-16,128,12816,128,128
      Fde2,03216,64,6432,64,64
      BAM2,0-32,64,6432,64,64
      Fde3,06432,32,3264,32,32
      Fde2,13264,64,6432,64,64
      Fde1,11632,128,12816,128,128
      Fde0,1816,256,2568,256,256
      Ffinal18,256,2561,256,256
    • Table 2. Performance of different methods on IoU, Pd, and Fa

      View table
      View in Article

      Table 2. Performance of different methods on IoU, Pd, and Fa

      方法NUAA-SIRST(条件1)NUAA-SIRST(条件2)
      IoU/(%)Pd/(%)Fa(10-6IoU/(%)Pd/(%)Fa(10-6
      Top-Hat17.6682.5634.957.14379.841012
      Max-Median3.9052.2949.324.17269.2055.33
      TLLCM0.9677.9858291.02979.095899
      IPI22.7786.2310.6525.6785.5511.47
      RIPT11.2477.9817.0311.0579.0822.61
      MDvsFA-CGAN63.2690.7549.3360.3089.3556.35
      ACM71.7896.333.57070.3393.913.728
      ALCNet74.3997.1622.7773.3396.5730.47
      DNANet-Light74.4698.1915.7974.7296.9518.18
      LIRDNet-ResNet1072.5297.2422.1773.4797.7126.23
      LIRDNet-ResNet1876.4798.0216.8574.8997.3316.09
      LIRDNet-ResNet3477.8199.211.24075.1897.337.060
    • Table 3. Performance of different deep learning-based methods on the number of model parameters, FLOPs, IoU, Pd, and Fa

      View table
      View in Article

      Table 3. Performance of different deep learning-based methods on the number of model parameters, FLOPs, IoU, Pd, and Fa

      方法#ParamsFLOPsmIoU/Pd/Fa
      ACM0.52 M1.75 G71.78/96.33/3.570
      ALCNet0.50 M1.48 G74.39/97.16/22.77
      MDvsFA-cGAN3.76 M868.75 G63.26/90.75/49.33
      DNANet-Light0.48 M1.88 G74.46/98.19/15.79
      LIRDNet-Res180.25 M1.43 G76.47/98.02/16.85
    • Table 4. Inference time and FLOPs performance of different deep learning-based methods on different computational units (Smart Phone-Chip, PC-GPU)

      View table
      View in Article

      Table 4. Inference time and FLOPs performance of different deep learning-based methods on different computational units (Smart Phone-Chip, PC-GPU)

      方法计算单元推理时间 /s浮点运算量 /G
      DNANet-Light天玑800U0.3221.88 G
      DNANet-Light麒麟9800.2111.88 G
      DNANet-LightNvidia 10700.1021.88 G
      DNANet-LightNvidia 30900.0051.88 G
      LIRDNet天玑800U0.1981.43 G
      LIRDNet麒麟9800.0971.43 G
      LIRDNetNvidia 10700.0761.43 G
      LIRDNetNvidia 30900.0021.43 G
    • Table 5. Ablation study on our proposed CFM module

      View table
      View in Article

      Table 5. Ablation study on our proposed CFM module

      Method#ParamsFLOPsmIoU/Pd/Fa

      LIRDNet-Res18

      w/o CFM

      0.232M1.184G73.01/96.58/24.13

      LIRDNet-Res18

      w/o CFM L1/L2

      0.234M1.204G73.39/97.16/34.59

      LIRDNet-Res18

      w/o CFM L1

      0.243M1.362G74.23/97.16/24.37
      LIRDNet-Res180.248M1.435 G76.47/98.02/16.85
    • Table 6. Ablation study on our introduced BAM module

      View table
      View in Article

      Table 6. Ablation study on our introduced BAM module

      Method#ParamsFLOPsmIoU/Pd/Fa

      LIRDNet-Res18

      w/o BAM

      0.245M1.415 G74.52/96.58/21.29

      LIRDNet-Res18

      w/o BAM SA

      0.247M1.422 G75.37/97.16/16.14

      LIRDNet-Res18

      w/o BAM CA

      0.247M1.434 G75.43/97.24/25.54
      LIRDNet-Res180.248M1.435 G76.47/98.02/16.85
    Tools

    Get Citation

    Copy Citation Text

    Zai-Ping LIN, Bo-Yang LI, Miao LI, Long-Guang WANG, Tian-Hao WU, Yi-Hang LUO, Chao XIAO, Ruo-Jing LI, Wei An. Light-weight infrared small target detection combining cross-scale feature fusion with bottleneck attention module[J]. Journal of Infrared and Millimeter Waves, 2022, 41(6): 1102

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Research Articles

    Received: Jun. 13, 2022

    Accepted: --

    Published Online: Feb. 6, 2023

    The Author Email: Zai-Ping LIN (linzaiping@sina.com)

    DOI:10.11972/j.issn.1001-9014.2022.06.020

    Topics