Chinese Journal of Lasers, Volume. 47, Issue 5, 0500014(2020)

Radiation-Resistant Active Fibers for Space Applications

Chongyun Shao1, Chunlei Yu1,2, and Lili Hu1,2、*
Author Affiliations
  • 1Key Laboratory of Materials for High Power Laser, Shanghai Institute of Optics and Fine Mechanics,Chinese Academy of Sciences, Shanghai 201800, China
  • 2Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences,Hangzhou, Zhejiang 310024, China
  • show less
    References(136)

    [1] Powell D. Lasers boost space communications[J]. Nature, 499, 266-267(2013).

    [2] Wright M W, Valley G C. Yb-doped fiber amplifier for deep-space optical communications[J]. Journal of Lightwave Technology, 23, 1369-1374(2005).

    [3] Huang J P, Zhang G, Wang P P et al. Research of radiation resistant Er doped fiber for space detection[J]. Proceedings of SPIE, 10141, 1014108(2016).

    [5] Williams G M, Friebele E J. Space radiation effects on erbium-doped fiber devices: sources, amplifiers, and passive measurements. [C]∥RADECS 97. Fourth European Conference on Radiation and its Effects on Components and Systems (Cat. No.97TH8294), September 15-19, 1997, Cannes, France. New York: IEEE, 399-404(1997).

    [6] Ott M N, Jin X D, Chuska R et al. Space flight requirements for fiber optic components: qualification testing and lessons learned[J]. Proceedings of SPIE, 6193, 619309(2006).

    [7] Girard S, Morana A, Ladaci A et al. Recent advances in radiation-hardened fiber-based technologies for space applications[J]. Journal of Optics, 20, 093001(2018).

    [8] Ott M N. Radiation effects data on commercially available optical fiber: database summary. [C]∥IEEE Radiation Effects Data Workshop, July 15-19, 2002, Phoenix, AZ, USA. New Tork: IEEE, 24-31(2002).

    [10] Berghmans F, Brichard B, Fernandez A F et al. An introduction to radiation effects on optical components and fiber optic sensors[M]. ∥Bock W J, Gannot I, Tanev S. Optical waveguide sensing and imaging. Dordrecht: Springer, 127-165(2008).

    [12] Friebele E J, Gingerich M E, Brambani L A et al. Radiation effects in polarization-maintaining fibers[J]. Proceedings of SPIE, 1314, 146-154(1990).

    [13] Olanterä L, Sigaud C, Troska J et al. Gamma irradiation of minimal latency hollow-core photonic bandgap fibres[J]. Journal of Instrumentation, 8, C12010(2013).

    [14] Girard S, Yahya A, Boukenter A et al. γ-radiation-induced attenuation in photonic crystal fibre[J]. Electronics Letters, 38, 1169-1171(2002).

    [15] Girard S, Ouerdane Y, Tortech B et al. Radiation effects on ytterbium- and ytterbium/erbium-doped double-clad optical fibers[J]. IEEE Transactions on Nuclear Science, 56, 3293-3299(2009).

    [16] Girard S, Ouerdane Y, Vivona M et al. Radiation effects on rare-earth doped optical fibers[J]. Proceedings of SPIE, 7818, 78170I(2010).

    [17] Velazco R, Fouillat P, Reis R. Radiation effects on embedded systems[M]. Dordrecht: Springer(2007).

    [19] Deng T, Xie J L, Luo J et al. Review of study on irradiation resistance properties of optical fibers[J]. Optical Communication Technology, 31, 58-61(2007).

    [20] Shao C Y. Study on structure, spectrum, radiation resistance and radiation-induced darkening mechanism of Yb 3+-doped silica glasses[D]. Beijing: University of Chinese Academy of Sciences(2019).

    [21] Friebele E J, Griscom D L, Stapelbroek M et al. Fundamental defect centers in glass: the peroxy radical in irradiated, high-purity, fused silica[J]. Physical Review Letters, 42, 1346-1349(1979).

    [22] Friebele E J, Long K J, Askina C G et al. Overview of radiation effects in fiber optics[J]. Proceedings of SPIE, 541, 70-88(1985).

    [23] Friebele E J. Radiation protection of fiber optic materials: effect of cerium doping on the radiation-induced absorption[J]. Applied Physics Letters, 27, 210-212(1975).

    [24] Girard S, Laurent A, Vivona M et al. Radiation effects on fiber amplifiers: design of radiation tolerant Yb/Er-based devices[J]. Proceedings of SPIE, 7914, 79142P(2011).

    [25] Girard S, Alessi A, Richard N et al. Overview of radiation induced point defects in silica-based optical fibers[J]. Reviews in Physics, 4, 100032(2019).

    [26] Zotov K V, Likhachev M E, Tomashuk A L et al. Radiation resistant Er-doped fibers: optimization of pump wavelength[J]. IEEE Photonics Technology Letters, 20, 1476-1478(2008).

    [27] Zotov K V, Likhachev M E, Tomashuk A L et al. Radiation-resistant erbium-doped fiber for spacecraft applications. [C]∥2007 9th European Conference on Radiation and Its Effects on Components and Systems, September 10-14, 2007, Deauville, France. New York: IEEE, 450-453(2007).

    [28] Zotov K V, Likhachev M E, Tomashuk A L et al. Radiation-resistant erbium-doped silica fibre[J]. Quantum Electronics, 37, 946-949(2007).

    [29] Likhachev M E, Bubnov M M, Zotov K V et al. Radiation resistance of Er-doped silica fibers: effect of host glass composition[J]. Journal of Lightwave Technology, 31, 749-755(2013).

    [30] Fox B P, Simmons-Potter K. Kliner D A V, et al. Effect of low-earth orbit space on radiation-induced absorption in rare-earth-doped optical fibers[J]. Journal of Non-Crystalline Solids, 378, 79-88(2013).

    [31] Fox B P, Simmons-Potter K, Thomes W J et al. Gamma-radiation-induced photodarkening in unpumped optical fibers doped with rare-earth constituents[J]. IEEE Transactions on Nuclear Science, 57, 1618-1625(2010).

    [32] Fox B P, Schneider Z V, Simmons-Potter K et al. Spectrally resolved transmission loss in gamma irradiated Yb-doped optical fibers[J]. IEEE Journal of Quantum Electronics, 44, 581-586(2008).

    [33] Sheng Y B, Yang L Y, Luan H X et al. Gamma radiation effects on absorption and emission properties of erbium-doped silicate glasses[J]. Acta Physica Sinica, 61, 116301(2012).

    [34] Sheng Y B, Xing R X, Luan H X et al. Gamma radiation effects on the optical properties of Yb-doped silicate glasses[J]. Journal of Inorganic Materials, 27, 860-864(2012).

    [35] Huang H Q, Zhao N, Chen G et al. Effects of γ-radiation on Yb-doped fiber[J]. Acta Physica Sinica, 63, 200201(2014).

    [36] Xing Y B, Zhao N, Liao L et al. Active radiation hardening of Tm-doped silica fiber based on pump bleaching[J]. Optics Express, 23, 24236-24245(2015).

    [37] Xing Y B, Liu Y Z, Zhao N et al. Radical passive bleaching of Tm-doped silica fiber with deuterium[J]. Optics Letters, 43, 1075-1078(2018).

    [38] Xing Y B, Liu Y Z, Cao R T et al. Elimination of radiation damage in Tm-doped silica fibers based on the radical bleaching of deuterium loading[J]. OSA Continuum, 1, 987-995(2018).

    [39] Xing Y B, Huang H Q, Zhao N et al. Pump bleaching of Tm-doped fiber with 793 nm pump source[J]. Optics Letters, 40, 681-684(2015).

    [40] Xing R X, Sheng Y B, Liu Z J et al. Investigation on radiation resistance of Er/Ce co-doped silicate glasses under 5 kGy gamma-ray irradiation[J]. Optical Materials Express, 2, 1329-1335(2012).

    [41] Xie F H, Shao C Y, Wang M et al. Research on photo-radiation darkening performance of ytterbium-doped silica fibers for space applications[J]. Journal of Lightwave Technology, 37, 1091-1097(2019).

    [42] Xie F H, Shao C Y, Wang M et al. Photodarkening-resistance improvement of Yb 3+/Al 3+ co-doped silica fibers fabricated via sol-gel method[J]. Optics Express, 26, 28506-28516(2018).

    [44] Wang F, Shao C Y, Yu C L et al. Effect of AlPO4 join concentration on optical properties and radiation hardening performance of Yb-doped Al2O3-P2O5-SiO2 glass[J]. Journal of Applied Physics, 125, 173104(2019).

    [45] Shao C Y, Wang F, Guo M T et al. Structure and property of Yb 3+/Al 3+/Ce 3+/F -doped silica glasses[J]. Journal of the Chinese Ceramic Society, 47, 120-131(2019).

    [46] Shao C Y, Xie F H, Wang F et al. UV absorption bands and its relevance to local structures of ytterbium ions in Yb 3+/Al 3+/P 5+-doped silica glasses[J]. Journal of Non-Crystalline Solids, 512, 53-59(2019).

    [48] Shao C Y, Jiao Y, Lou F G et al. Enhanced radiation resistance of ytterbium-doped silica fiber by pretreating on a fiber preform[J]. Optical Materials Express, 10, 408-420(2020).

    [49] Shao C Y, Ren J J, Wang F et al. Origin of radiation-induced darkening in Yb 3+/Al 3+/P 5+-doped silica glasses: effect of the P/Al ratio[J]. The Journal of Physical Chemistry B, 122, 2809-2820(2018).

    [50] Shao C Y, Xu W, Ollier N et al. Suppression mechanism of radiation-induced darkening by Ce doping in Al/Yb/Ce-doped silica glasses: evidence from optical spectroscopy, EPR and XPS analyses[J]. Journal of Applied Physics, 120, 153101(2016).

    [52] Ma J, Li M, Tan L Y et al. Experimental investigation of radiation effect on erbium-ytterbium co-doped fiber amplifier for space optical communication in low-dose radiation environment[J]. Optics Express, 17, 15571-15577(2009).

    [53] Ma J, Li M, Tan L Y et al. Space radiation effect on EDFA for inter-satellite optical communication[J]. Optik, 121, 535-538(2010).

    [54] Liu C X, Wu X, Zhu J H et al. Radiation-resistant Er 3+-doped superfluorescent fiber sources[J]. Sensors, 18, 2236(2018).

    [55] Wu X, Liu C X, Wu D et al. Radiation resistance of an Er/Ce codoped superfluorescent source of conventional fiber and photonic crystal fiber[J]. Optical Engineering, 56, 126109(2017).

    [57] Wang W, Wang X F, Li J et al. Experiment on performance of erbium-doped fiber source for high performance fiber-optic gyroscope in a space irradiation environment[J]. Infrared and Laser Engineering, 41, 1826-1830(2012).

    [58] Wang Q, Tian C P, Wang Y Y et al. Review of radiation hardening techniques for EDFAs in space environment[J]. Proceedings of SPIE, 9521, 95211D(2015).

    [59] Cao J H, Jian S S, Wang M et al. Co 60 radiation effects on rare earth doped fibers[J]. Optik, 127, 1677-1680(2016).

    [62] Griscom D L. A minireview of the natures of radiation-induced point defects in pure and doped silica glasses and their visible/near-IR absorption bands, with emphasis on self-trapped holes and how they can be controlled[J]. Physics Research International, 2013, 379041(2013).

    [63] Griscom D L. Nature of defects and defect generation in optical glasses[J]. Proceedings of SPIE, 541, 38-59(1985).

    [64] Griscom D L. The natures of point defects in amorphous silicon dioxide[M]. ∥Pacchioni G, Skuja L, Griscom D L. Defects in SiO2 and related dielectrics: science and technology. Dordrecht: Springer, 117-159(2000).

    [65] Griscom D L. Optical properties and structure of defects in silica glass[J]. Journal of the Ceramic Society of Japan, 99, 923-942(1991).

    [66] Griscom D L. Defect structure of glasses: some outstanding questions in regard to vitreous silica[J]. Journal of Non-Crystalline Solids, 73, 51-77(1985).

    [67] Griscom D L, Friebele E J, Long K J et al. Fundamental defect centers in glass: electron spin resonance and optical absorption studies of irradiated phosphorus-doped silica glass and optical fibers[J]. Journal of Applied Physics, 54, 3743-3762(1983).

    [69] Arai T, Ichii K, Tanigawa S et al. Gamma-radiation-induced photodarkening in ytterbium-doped silica glasses[J]. Proceedings of SPIE, 7914, 79140K(2011).

    [71] Ollier N, Corbel C, Duchez J B et al. In situ observation of the Yb 2+ emission in the radiodarkening process of Yb-doped optical preform[J]. Optics Letters, 41, 2025-2028(2016).

    [72] Hu L L[M]. Shanghai: Shanghai Scientific & Technical Publishers(2019).

    [73] Rydberg S, Engholm M. Experimental evidence for the formation of divalent ytterbium in the photodarkening process of Yb-doped fiber lasers[J]. Optics Express, 21, 6681-6688(2013).

    [75] Hari Babu B, Ollier N, León Pichel M et al. Radiation hardening in sol-gel derived Er 3+-doped silica glasses[J]. Journal of Applied Physics, 118, 123107(2015).

    [76] Malchukova E, Boizot B. Reduction of Eu 3+ to Eu 2+ in aluminoborosilicate glasses under ionizing radiation[J]. Materials Research Bulletin, 45, 1299-1303(2010).

    [77] Zhang J, Riesen H. Controlled generation of Tm 2+ ions in nanocrystalline BaFCl∶Tm 3+ by X-ray irradiation[J]. The Journal of Physical Chemistry A, 121, 803-809(2017).

    [79] Vahedi S, Okada G, Morrell B et al. X-ray induced Sm 3+ to Sm 2+ conversion in fluorophosphate and fluoroaluminate glasses for the monitoring of high-doses in microbeam radiation therapy[J]. Journal of Applied Physics, 112, 073108(2012).

    [80] Pal Singh G, Kaur P, Kaur S et al. Conversion of Ce 3+ to Ce 4+ ions after gamma ray irradiation on CeO2-PbO-B2O3 glasses[J]. Physica B: Condensed Matter, 408, 115-118(2013).

    [81] Imai H, Arai K, Imagawa H et al. Two types of oxygen-deficient centers in synthetic silica glass[J]. Physical Review B, 38, 12772-12775(1988).

    [82] Amossov A V, Rybaltovsky A O. Oxygen-deficient centers in silica glasses: a review of their properties and structure[J]. Journal of Non-Crystalline Solids, 179, 75-83(1994).

    [83] Skuja L. Optically active oxygen-deficiency-related centers in amorphous silicon dioxide[J]. Journal of Non-Crystalline Solids, 239, 16-48(1998).

    [84] Brower K L. Electron paramagnetic resonance of Al E1' centers in vitreous silica[J]. Physical Review B, 20, 1799-1811(1979).

    [85] Hideo H, Hiroshi K. Radiation-induced coloring and paramagnetic centers in synthetic SiO2∶Al glasses[J]. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, 91, 395-399(1994).

    [86] Chah K, Boizot B, Reynard B et al. Micro-Raman and EPR studies of β-radiation damages in aluminosilicate glass[J]. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, 191, 337-341(2002).

    [87] Fujimaki M, Watanabe T, Katoh T et al. Structures and generation mechanisms of paramagnetic centers and absorption bands responsible for Ge-doped SiO2 optical-fiber gratings[J]. Physical Review B, 57, 3920-3926(1998).

    [88] Alessi A, Agnello S, Gelardi F M et al. Influence of Ge doping level on the EPR signal of Ge(1), Ge(2) and E'Ge defects in Ge-doped silica[J]. Journal of Non-Crystalline Solids, 357, 1900-1903(2011).

    [89] Kobayashi Y, Sekiya E H, Saito K et al. Effects of Ge co-doping on P-related radiation-induced absorption in Er/Yb-doped optical fibers for space applications[J]. Journal of Lightwave Technology, 36, 2723-2729(2018).

    [90] Leon M, Lancry M, Ollier N et al. Influence of Al/Ge ratio on radiation-induced attenuation in nanostructured erbium-doped fibers preforms. [C]∥CLEO: 2015, May 10-15, 2015, San Jose, California. Washington, D.C.: OSA, SM3L, 8(2015).

    [91] Girard S, Ouerdane Y, Bouazaoui M et al. Transient radiation-induced effects on solid core microstructured optical fibers[J]. Optics Express, 19, 21760-21767(2011).

    [92] Nagasawa K, Tanabe M, Yahagi K. Gamma-ray-induced absorption bands in pure-silica-core fibers[J]. Japanese Journal of Applied Physics, 23, 1608-1613(1984).

    [93] Girard S, Tortech B, Regnier E et al. Proton- and gamma-induced effects on erbium-doped optical fibers[J]. IEEE Transactions on Nuclear Science, 54, 2426-2434(2007).

    [94] Barnes C E, Greenwell R A, Nelson G W. The effect of fiber coating on the radiation response of fluorosilicate clad, pure silica core step index fibers[J]. Proceedings of SPIE, 787, 69-76(1987).

    [95] Brichard B, Fernandez Fernandez A, Berghmans F et al. Origin of the radiation-induced OH vibration band in polymer-coated optical fibers irradiated in a nuclear fission reactor[J]. IEEE Transactions on Nuclear Science, 49, 2852-2856(2002).

    [96] Hanafusa H, Hibino Y, Yamamoto F. Drawing condition dependence of radiation-induced loss in optical fibres[J]. Electronics Letters, 22, 106-108(1986).

    [97] Girard S, Ouerdane Y, Boukenter A et al. Transient radiation responses of silica-based optical fibers: influence of modified chemical-vapor deposition process parameters[J]. Journal of Applied Physics, 99, 023104(2006).

    [98] Tool A Q. Relation between inelastic deformability and thermal expansion of glass in its annealing range[J]. Journal of the American Ceramic Society, 29, 240-253(1946).

    [99] Wang R P, Tai N, Saito K et al. Fluorine-doping concentration and fictive temperature dependence of self-trapped holes in SiO2 glasses[J]. Journal of Applied Physics, 98, 023701(2005).

    [100] Babu B H, Lancry M, Ollier N et al. Radiation hardening of sol gel-derived silica fiber preforms through fictive temperature reduction[J]. Applied Optics, 55, 7455-7461(2016).

    [101] Lancry M, Babu B H, Ollier N et al. Radiation hardening of silica glass through fictive temperature reduction[J]. International Journal of Applied Glass Science, 8, 285-290(2017).

    [102] Girard S, Keurinck J, Boukenter A et al. Gamma-rays and pulsed X-ray radiation responses of nitrogen-, germanium-doped and pure silica core optical fibers[J]. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, 215, 187-195(2004).

    [103] Girard S, Brichard B, Baggio J et al. Comparative study of pulsed X-ray and γ-ray radiation-induced effects in pure-silica-core optical fibers. [C]∥2005 8th European Conference on Radiation and Its Effects on Components and Systems, September 19-23, 2005, Cap d'Agde, France. New York: IEEE, 4365552(2005).

    [104] Wijnands T, de Jonge L K, Kuhnhenn J et al. Optical absorption in commercial single mode optical fibers in a high energy physics radiation field[J]. IEEE Transactions on Nuclear Science, 55, 2216-2222(2008).

    [106] Ladaci A, Girard S, Mescia L et al. Optimization of rare-earth-doped amplifiers for space mission through a hardening-by-system strategy[J]. Proceedings of SPIE, 10096, 100690F(2017).

    [107] Ladaci A. Rare earth doped optical fibers and amplifiers for space applications Lyon,[D]. France: Université de Lyon(2017).

    [109] Griscom D L. Radiation hardening of pure-silica-core optical fibers by ultra-high-dose γ-ray pre-irradiation[J]. Journal of Applied Physics, 77, 5008-5013(1995).

    [112] Babu B H, Ollier N, Savelli I et al. Study of radiation effects on Er 3+-doped nanoparticles germano-silica fibers[J]. Journal of Lightwave Technology, 34, 4981-4987(2016).

    [113] Ladaci A, Girard S, Mescia L et al. Radiation hardened high-power Er 3+/Yb 3+-codoped fiber amplifiers for free-space optical communications[J]. Optics Letters, 43, 3049-3052(2018).

    [115] Ladaci A, Girard S, Mescia L et al. X-rays, γ-rays, electrons and protons radiation-induced changes on the lifetimes of Er 3+ and Yb 3+ ions in silica-based optical fibers[J]. Journal of Luminescence, 195, 402-407(2018).

    [116] Vivona M, Girard S, Marcandella C et al. Radiation hardening of rare-earth doped fiber amplifiers[J]. Proceedings of SPIE, 10564, 105641H(2017).

    [118] Faile S P, Schmidt J J, Roy D M. Irradiation effects in glasses: suppression by synthesis under high-pressure hydrogen[J]. Science, 156, 1593-1595(1967).

    [119] Nagasawa K, Hoshi Y, Ohki Y et al. Improvement of radiation resistance of pure silica core fibers by hydrogen treatment[J]. Japanese Journal of Applied Physics, 24, 1224-1228(1985).

    [123] Griscom D L. Erratum: “Radiation hardening of pure-silica-core optical fibers by ultra-high-dose γ-ray pre-irradiation”[J. Appl. Phys. 77, 5008 (1995)][J]. Journal of Applied Physics, 118, 5008(2015).

    [124] Kim Y, Ju S, Jeong S et al. Gamma-ray radiation response at 1550 nm of fluorine-doped radiation hard single-mode optical fiber[J]. Optics Express, 24, 3910-3920(2016).

    [125] Hosono H, Ikuta Y, Kinoshita T et al. Physical disorder and optical properties in the vacuum ultraviolet region of amorphous SiO2[J]. Physical Review Letters, 87, 175501(2001).

    [126] Staurt B. Infrared spectroscopy: fundamentals and applications[M]. West Sussex, England: John Wiley and Sons, Ltd.(2004).

    [127] Humbach O, Fabian H, Grzesik U et al. Analysis of OH absorption bands in synthetic silica[J]. Journal of Non-Crystalline Solids, 203, 19-26(1996).

    [128] Stone J. Interactions of hydrogen and deuterium with silica optical fibers: a review[J]. Journal of Lightwave Technology, 5, 712-733(1987).

    [129] Ramsey A T, Tighe W, Bartolick J et al. Radiation effects on heated optical fibers[J]. Review of Scientific Instruments, 68, 632-635(1997).

    [130] Söderlund M J. Montiei i Ponsoda J J, Koplow J P, et al. Thermal bleaching of photodarkening in ytterbium-doped fibers[J]. Proceedings of SPIE, 7580, 75800B(2010).

    [131] Friebele E J, Gingerich M E. Photobleaching effects in optical fiber waveguides[J]. Applied Optics, 20, 3448-3452(1981).

    [132] Liu Y Z, Xing Y B, Lin X F et al. Bleaching of photodarkening in Tm-doped silica fiber with deuterium loading[J]. Optics Letters, 45, 2534-2537(2020).

    [133] Girard S, Ouerdane Y, Origlio G et al. Radiation effects on silica-based preforms and optical fibers: I: experimental study with canonical samples[J]. IEEE Transactions on Nuclear Science, 55, 3473-3482(2008).

    [134] Girard S, Richard N, Ouerdane Y et al. Radiation effects on silica-based preforms and optical fibers: II: coupling ab initio simulations and experiments[J]. IEEE Transactions on Nuclear Science, 55, 3508-3514(2008).

    [135] Girard S, Mescia L, Vivona M et al. Design of radiation-hardened rare-earth doped amplifiers through a coupled experiment/simulation approach[J]. Journal of Lightwave Technology, 31, 1247-1254(2013).

    [136] Mescia L, Girard S, Bia P et al. Optimization of the design of high power Er 3+/Yb 3+-codoped fiber amplifiers for space missions by means of particle swarm approach[J]. IEEE Journal of Selected Topics in Quantum Electronics., 20, 484-491(2014).

    [137] Ladaci A, Girard S, Mescia L et al. Optimized radiation-hardened erbium doped fiber amplifiers for long space missions[J]. Journal of Applied Physics, 121, 163104(2017).

    Tools

    Get Citation

    Copy Citation Text

    Chongyun Shao, Chunlei Yu, Lili Hu. Radiation-Resistant Active Fibers for Space Applications[J]. Chinese Journal of Lasers, 2020, 47(5): 0500014

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: reviews

    Received: Jan. 2, 2020

    Accepted: Feb. 18, 2020

    Published Online: May. 12, 2020

    The Author Email: Lili Hu (hulili@siom.ac.cn)

    DOI:10.3788/CJL202047.0500014

    Topics