Journal of Semiconductors, Volume. 41, Issue 10, 101301(2020)

Silicon photonic transceivers for application in data centers

Haomiao Wang1,2, Hongyu Chai1,2, Zunren Lv1,2, Zhongkai Zhang1,2, Lei Meng1,2, Xiaoguang Yang1,2, and Tao Yang1,2
Author Affiliations
  • 1Key Laboratory of Semiconductor Materials Science, Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083, China
  • 2Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
  • show less
    References(96)

    [1]

    [2] N Jones. The information factories. Nature, 561, 163(2018).

    [3] D Miller. Device requirements for optical interconnects to silicon chips. Proc IEEE, 97, 1166(2009).

    [4] K Ohashi, K Nishi, T Shimizu et al. On-chip optical interconnect. Proc IEEE, 97, 1186(2009).

    [5] Z G Lu, J R Liu, C Y Song et al. High performance InAs/InP quantum dot 34.462-GHz C-band coherent comb laser module. Opt Express, 26, 2160(2018).

    [6] Z R Lv, Z K Zhang, X G Yang et al. Improved performance of 1.3-μm InAs/GaAs quantum dot lasers by direct Si doping. Appl Phys Lett, 113, 011105(2018).

    [7] L Chen, Q Xu, M G Wood et al. Hybrid silicon and lithium niobate electro-optical ring modulator. Optica, 1, 112(2014).

    [8] C Wang, M Zhang, X Chen et al. Integrated lithium niobate electro-optic modulators operating at CMOS-compatible voltages. Nature, 562, 101(2018).

    [9] S Liao, N N Feng, D Feng. 36 GHz submicron silicon waveguide germanium photodetector. Opt Express, 19, 10967(2011).

    [10] L Chen, C R Doerr, Y K Chen et al. Low-loss and broadband cantilever couplers between standard cleaved fibers and high-index-contrast Si3N4 or Si waveguides. IEEE Photonics Technol Lett, 22, 1744(2010).

    [11] T Pinguet, S Denton, S Gloeckner et al. High-volume manufacturing platform for silicon photonics. Proc IEEE, 106, 2281(2018).

    [12] Q Z Deng, L Liu, R Zhang et al. Athermal and flat-topped silicon Mach-Zehnder filters. Opt Express, 24, 29577(2016).

    [13] T Hiraki, H Nishi, T Tsuchizawa et al. Si–Ge–silica monolithic integration platform and its application to a 22-Gb/s × 16-ch WDM receiver. IEEE Photonics J, 5, 4500407(2013).

    [14] A Mekis, S Gloeckner, G Masini et al. A grating-coupler-enabled CMOS photonics platform. IEEE J Sel Top Quantum Electron, 17, 597(2011).

    [15] J N Winn, D Rusin, C S Kochanek. A high-speed silicon optical modulator based on a metal-oxide-semiconducor capacitor. Nature, 427, 613(2004).

    [16] C T DeRose, D C Trotter, W A Zortman et al. Ultra compact 45 GHz CMOS compatible Germanium waveguide photodiode with low dark current. Opt Express, 19, 24897(2011).

    [17] H Ennen, J Schneider, G Pomrenke et al. 1.54-μm luminescence of erbium-implanted III–V semiconductors and silicon. Appl Phys Lett, 43, 943(1983).

    [18] S Wirths, R Geiger, N von den Driesch et al. Lasing in direct-bandgap GeSn alloy grown on Si. Nat Photonics, 9, 88(2015).

    [19] M d'Avezac, J W Luo, T Chanier et al. Genetic-algorithm discovery of a direct-gap and optically allowed superstructure from indirect-gap Si and Ge semiconductors. Phys Rev Lett, 108, 027401(2012).

    [20] R E Camacho-Aguilera, Y Cai, N Patel et al. An electrically pumped germanium laser. Opt Express, 20, 11316(2012).

    [21] Z Zhou, B Yin, J Michel. On-chip light sources for silicon photonics. Light: Sci Appl, 4, e358(2015).

    [22] N Kobayashi, K Sato, M Namiwaka et al. Silicon photonic hybrid ring-filter external cavity wavelength tunable lasers. J Lightwave Technol, 33, 1241(2015).

    [23] T Wang, H Liu. 1.3-μm InAs/GaAs quantum-dot lasers monolithically grown on Si substrates. Opt Express, 19, 11381(2011).

    [24] S Chen, W Li, J Wu et al. Electrically pumped continuous-wave III–V quantum dot lasers on silicon. Nat Photonics, 10, 307(2016).

    [25] Q Li, K W Ng, K M Lau. Growing antiphase-domain-free GaAs thin films out of highly ordered planar nanowire arrays on exact (001) silicon. Appl Phys Lett, 106, 072105(2015).

    [26] C S Schulze, X Huang, C Prohl et al. Atomic structure and stoichiometry of In(Ga)As/GaAs quantum dots grown on an exact-oriented GaP/Si(001) substrate. Appl Phys Lett, 108, 143101(2016).

    [27] Y Wan, Q Li, Y Geng et al. InAs/GaAs quantum dots on GaAs-on-V-grooved-Si substrate with high optical quality in the 1.3 μm band. Appl Phys Lett, 107, 081106(2015).

    [28] A W Fang, H Park, J E Bowers. Electrically pumped hybrid AlGaInAs–silicon evanescent laser. Opt Express, 14, 9203(2006).

    [29] C Zhang, J E Bowers. Silicon photonic terabit/s network-on-chip for datacenter interconnection. Opt Fiber Technol, 44, 2(2018).

    [30] E Agrell, M Karlsson, A R Chraplyvy et al. Roadmap of optical communications. J Opt, 18, 063002(2016).

    [31] Y Urino, T Usuki, J Fujikata et al. High-density and wide-bandwidth optical interconnects with silicon optical interposers. Photonics Res, 2, A1(2014).

    [32] T Shimizu, N Hatori, Y Arakawa. High density hybrid integrated light source with a laser diode array on a silicon optical waveguide platform for inter-chip optical interconnection. Group IV Photonics, 181(2011).

    [33] B Jang, K Tanabe, S Kako et al. A hybrid silicon evanescent quantum dot laser. Appl Phys Express, 9, 092102(2016).

    [34] H Wang, D Kim, M Harfouche et al. Narrow-linewidth oxide-confined heterogeneously integrated Si/III–V semiconductor lasers. IEEE Photonics Technol Lett, 29, 2199(2017).

    [35] Y Arakawa, H Sakaki. Multidimensional quantum well laser and temperature dependence of its threshold current. Appl Phys Lett, 40, 939(1982).

    [36] M Sugawara, M Usami. Handiling the heat QD-lasers. Nat Photonics, 3, 30(2009).

    [37] K Nishi, H Saito, S Sugou et al. A narrow photoluminescence linewidth of 21 meV at 1.35 μm from strain-reduced InAs quantum dots covered by In0.2Ga0.8As grown on GaAs substrates. Appl Phys Lett, 74, 1111(1999).

    [38] K Nishi, K Takemasa, M Sugawara et al. Development of quantum dot lasers for data-com and silicon photonics applications. IEEE J Sel Top Quantum Electron, 23, 1(2017).

    [39] K Takada, Y Tanaka, T Matsumoto et al. Wide-temperature-range 10.3 Gbit/s operations of 1.3 μm high-density quantum-dot DFB lasers. Electron Lett, 47, 206(2011).

    [40] A Akrout, A Shen, R Brenot et al. Separate error-free transmission of eight channels at 10 Gb/s using comb generation in a quantum-dash-based mode-locked laser. IEEE Photonics Technol Lett, 21, 1746(2009).

    [41] D O'Brien, S P Hegarty, G Huyet et al. Sensitivity of quantum-dot semiconductor lasers to optical feedback. Opt Lett, 29, 1072(2004).

    [42] Y G Zhou, C Zhou, C F Cao et al. Relative intensity noise of InAs quantum dot lasers epitaxially grown on Ge. Opt Express, 25, 28817(2017).

    [43] M Liao, S Chen, J S Park et al. III–V quantum-dot lasers monolithically grown on silicon. Semicond Sci Technol, 33, 123002(2018).

    [44]

    [45] D Jung, J Norman, M J Kennedy et al. High efficiency low threshold current 1.3 μm InAs quantum dot lasers on on-axis (001) GaP/Si. Appl Phys Lett, 111, 122107(2017).

    [46] B Shi, L Wang, A A Taylor et al. MOCVD grown low dislocation density GaAs-on-V-groove patterned (001) Si for 1.3 μm quantum dot laser applications. Appl Phys Lett, 114, 172102(2019).

    [47] W Q Wei, J H Wang, B Zhang et al. InAs QDs on (111)-faceted Si (001) hollow substrates with strong emission at 1300 nm and 1550 nm. Appl Phys Lett, 113, 053107(2018).

    [48] T Ward, A M Sánchez, M Tang et al. Design rules for dislocation filters. J Appl Phys, 116, 063508(2014).

    [49] K Volz, A Beyer, W Witte et al. GaP-nucleation on exact Si (001) substrates for III/V device integration. J Cryst Growth, 315, 37(2011).

    [50] R Alcotte, M Martin, J Moeyaert et al. Epitaxial growth of antiphase boundary free GaAs layer on 300 mm Si (001) substrate by metalorganic chemical vapour deposition with high mobility. APL Mater, 4, 046101(2016).

    [51] B Zhang, W Q Wei, J H Wang et al. O-band InAs/GaAs quantum-dot microcavity laser on Si (001) hollow substrate by in-situ hybrid epitaxy. AIP Adv, 9, 015331(2019).

    [52] D Jung, P G Callahan, B Shin et al. Low threading dislocation density GaAs growth on on-axis GaP/Si (001). J Appl Phys, 122, 225703(2017).

    [53] A D Lee, g Q Jiang, g M C Tang et al. InAs/GaAs quantum-dot lasers monolithically grown on Si, Ge, and Ge-on-Si substrates. IEEE J Sel Top Quantum Electron, 19, 1901107(2013).

    [54] M Akiyama, Y Kawarada, T Ueda et al. Growth of high quality GaAs layers on Si substrate by MOCVD. J Cryst Growth, 77, 490(1986).

    [55] M Tang, S Chen, J Wu et al. 1.3-μm InAs/GaAs quantum-dot lasers monolithically grown on Si substrates using InAlAs/GaAs dislocation filter layers. Opt Express, 22, 11528(2014).

    [56] W Li, S Chen, M Tang et al. Effect of rapid thermal annealing on threading dislocation density in III–V epilayers monolithically grown on silicon. J Appl Phys, 123, 215303(2018).

    [57] Y Wan, D Inoue, D Jung et al. Directly modulated quantum dot lasers on silicon with a milliampere threshold and high temperature stability. Photonics Res, 6, 776(2018).

    [58] Y Urino, T Shimizu, M Okano et al. First demonstration of high density optical interconnects integrated with lasers, optical modulators and photodetectors on single silicon substrate. Opt Express, 19, B159(2011).

    [59] D J Thomson, F Y Gardes, J M Fedeli et al. 50-Gb/s silicon optical modulator. IEEE Photonics Technol Lett, 24, 234(2012).

    [60] J Witzens. High-speed silicon photonics modulators. Proc IEEE, 106, 2158(2018).

    [61] M Ziebell, D Marris-Morini, G Rasigade et al. 40 Gbit/s low-loss silicon optical modulator based on a pipin diode. Opt Express, 20, 10591(2012).

    [62] E Timurdogan, C M Sorace-Agaskar, J Sun et al. An ultralow power athermal silicon modulator. Nat Commun, 5, 4008(2014).

    [63] K Debnath, D J Thomson, W Zhang et al. All-silicon carrier accumulation modulator based on a lateral metal–oxide–semiconductor capacitor. Photonics Res, 6, 373(2018).

    [64] Y Ishikawa, K Wada, J Liu et al. Strain-induced enhancement of near-infrared absorption in Ge epitaxial layers grown on Si substrate. J Appl Phys, 98, 013501(2005).

    [65] Y Ishikawa, K Wada, D D Cannon et al. Strain-induced band gap shrinkage in Ge grown on Si substrate. Appl Phys Lett, 82, 2044(2003).

    [66] T Yin, R Cohen. 31GHz Ge n–i–p waveguide photodetectors on silicon-on-insulator substrate. Opt Express, 15, 13965(2007).

    [67] G Dehlinger, S J Koester, J D Schaub et al. High-speed germanium-on-SOI lateral PIN photodiodes. IEEE Photonics Technol Lett, 16, 2547(2004).

    [68] S Lischke, D Knoll, C Mai et al. High bandwidth, high responsivity waveguide-coupled germanium p–i–n photodiode. Opt Express, 23, 27213(2015).

    [69] S Pathak, P Dumon, D Van Thourhout et al. Comparison of AWGs and echelle gratings for wavelength division multiplexing on silicon-on-insulator. IEEE Photonics J, 6, 1(2014).

    [70] S H Jeong, Y Tanaka. Silicon-wire optical demultiplexers based on multistage delayed Mach-Zehnder interferometers for higher production yield. Appl Opt, 57, 6474(2018).

    [71] S Pathak, M Vanslembrouck, P Dumon et al. Optimized silicon AWG with flattened spectral response using an MMI aperture. J Lightwave Technol, 31, 87(2013).

    [72] Y Urino, N Hatori, K Mizutani et al. First demonstration of athermal silicon optical interposers with quantum dot lasers operating up to 125 °C. J Lightwave Technol, 33, 1223(2015).

    [73] K Kurata, Y Suzuki, M Kurihara et al. Prospect of chip scale silicon photonics transceiver for high density multi-mode wiring system. Opt Commun, 362, 36(2016).

    [74] K Yashiki, T Uemura, M Kurihara et al. 25-Gbps/ch error-free operation over 300-m MMF of low-power-consumption silicon-photonics-based chip-scale optical I/O cores. IEICE Trans Electron, E99.C, 148(2016).

    [75] T Nakamura, K Yashiki, K Mizutani et al. Fingertip-size optical module, optical io core, and its application in FPGA. 2019 the Institude of Electronics, Information and Communication Engineers, E102-C, 333(2019).

    [76] T Aoki, S Sekiguchi, T Simoyama et al. Low-crosstalk simultaneous 16-channel × 25 Gb/s operation of high-density silicon photonics optical transceiver. J Lightwave Technol, 36, 1262(2018).

    [77]

    [78]

    [79] S Kupijai, H Rhee, A Al-Saadi et al. 25 Gb/s silicon photonics interconnect using a transmitter based on a node-matched-diode modulator. J Lightwave Technol, 34, 2920(2016).

    [80]

    [81]

    [82]

    [83] A Moscoso-Martir, A Tabatabaei-Mashayekh, J Muller et al. 8-channel WDM silicon photonics transceiver with SOA and semiconductor mode-locked laser. Opt Express, 26, 25446(2018).

    [84] J Verbist, J Lambrecht, M Verplaetse et al. Real-time and DSP-free 128 Gb/s PAM-4 link using a binary driven silicon photonic transmitter. J Lightwave Technol, 37, 274(2019).

    [85]

    [86]

    [87] Z Zhang, C Li, J Chen et al. Coherent transceiver operating at 61-Gbaud/s. Opt Express, 23, 18988(2015).

    [88]

    [89]

    [90] E Depaoli, H Zhang, M Mazzini et al. A 64 Gb/s low-power transceiver for short-reach PAM-4 electrical links in 28-nm FDSOI CMOS. IEEE J Solid-State Circuits, 54, 6(2019).

    [91]

    [92]

    [93] C R Doerr, N K Fontaine, L L Buhl. PDM-DQPSK silicon receiver with integrated monitor and minimum number of controls. IEEE Photonics Technol Lett, 24, 697(2012).

    [94] D Po, L Xiang, S Chandrasekhar et al. Monolithic silicon photonic integrated circuits for compact 100+Gb/s coherent optical receivers and transmitters. IEEE J Sel Top Quantum Electron, 20, 150(2014).

    [95] H Sepehrian, J Lin, L A Rusch et al. Silicon photonic IQ modulators for 400 Gb/s and beyond. J Lightwave Technol, 37, 3078(2019).

    [96]

    Tools

    Get Citation

    Copy Citation Text

    Haomiao Wang, Hongyu Chai, Zunren Lv, Zhongkai Zhang, Lei Meng, Xiaoguang Yang, Tao Yang. Silicon photonic transceivers for application in data centers[J]. Journal of Semiconductors, 2020, 41(10): 101301

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Reviews

    Received: Dec. 22, 2019

    Accepted: --

    Published Online: Sep. 10, 2021

    The Author Email:

    DOI:10.1088/1674-4926/41/10/101301

    Topics