Acta Optica Sinica, Volume. 37, Issue 12, 1210002(2017)

Depth Map Super-Resolution Reconstruction Based on Convolutional Neural Networks

Sumei Li, Guoqing Lei*, and Ru Fan
Author Affiliations
  • School of Electrical Automation and Information Engineering, Tianjin University, Tianjin 300072, China
  • show less
    References(26)

    [1] Jiang Hongzhi, Zhao Huijie, Liang Xiaoyue et al. Phase-base stereo matching using epipolar line rectification[J]. Optics and Precision Engineering, 19, 2520-2525(2011).

    [2] Liu Jiaoli, Li Sumei, Li Yongda et al[J]. High-resolution depth maps based on TOF-stereo fusion Information Technology, 2016, 190-193.

    [3] Kopf J, Cohen M, Lischinski D et al. Joint bilateral upsampling[J]. ACM Transactions on Graphics, 26, 96-100(2007).

    [4] He K, Sun J, Tang X O. Guided image filtering[C]. European Conference on Computer Vision, 1-14(2010).

    [5] Park J, Kim H, Tai Y W et al. High quality depth map upsampling for 3D-TOF cameras[C]. 2011 International Conference on Computer Vision, 6-13(2011).

    [8] Yang Y X, Wang Z F. Range image super-resolution via guided image filter[C]. 4th International Conference on Internet Multimedia Computing and Service, 200-203(2012).

    [10] Liu M Y, Tuzel O, Taguchi Y. Joint geodesic upsampling of depth images[C]. IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 169-176(2013).

    [11] Ferstl D, Reinbacher C, Ranftl R et al. Image guided depth upsampling using anisotropic total generalized variation[C]. 2013 IEEE International Conference on Computer Vision, 993-1000(2013).

    [12] Li Y J, Xue T F, Sun L F et al. Joint example-based depth map super-resolution[C]. 2012 IEEE International Conference on Multimedia and Expo, 152-157(2012).

    [13] Kwon H H, Tai Y W, Lin S. Data-driven depth map refinement via multi-scale sparse representation[C]. 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 159-167(2015).

    [14] Kiechle M, Hawe S, Kleinsteuber M. A joint intensity and depth co-sparse analysis model for depth map super-resolution[C]. IEEE International Conference on Computer Vision, 1545-1552(2013).

    [15] Gevrekci M, Pakin K. Depth map super resolution[C]. 2011 IEEE 19th Signal Processing and Communications Applications Conference, 502-505(2011).

    [16] Patti A J, Ibrahim Sezan M, Murat Tekalp A. High-resolution image reconstruction from a low-resolution image sequence in the presence of time-varying motion blur[C]. Proceedings of 1st International Conference on Image Processing, 1, 343-347(1994).

    [17] Rajagopalan A N, Bhavsar A, Wallhoff F et al. Resolution enhancement of PMD range maps[C]. DAGM Symposium on Pattern Recognition, 304-313(2008).

    [18] Diebel J, Thrun S. An application of Markov random fields to range sensing[C]. Advances in Neural Information Processing Systems, 291-298(2005).

    [19] Aodha O M. Campbell N D F, Nair A, et al. Patch based synthesis for single depth image super-resolution[C]. European Conference on Computer Vision, 71-84(2012).

    [20] Schuon S, Theobalt C, Davis J et al. LidarBoost: depth superresolution for ToF 3D shape scanning[C]. IEEE Conference on Computer Vision and Pattern Recognition, 343-350(2009).

    [22] Wang Z W, Liu D, Yang J C et al. Deep networks for image super-resolution with sparse prior[C]. IEEE International Conference on Computer Vision, 370-378(2015).

    [23] Dong C, Loy C C, He K M et al. Image super-resolution using deep convolutional networks[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 38, 295-307(2016).

    CLP Journals

    [1] Sumei Li, Yongli Chang, Zhicheng Duan. Objective Assessment of Stereoscopic Image Comfort Based on Convolutional Neural Network[J]. Acta Optica Sinica, 2018, 38(6): 0610003

    [2] Hanqing Sun, Yanwei Pang. An Neural Network Framework of Self-Learning Uncertainty[J]. Acta Optica Sinica, 2018, 38(6): 0620002

    [3] ZHANG Daming, HE Xiaohai, REN Chao, WU Xiaohong, LI Xinglong, FAN Meng. Image compression framework based on adaptive sub-sampling and super-resolution reconstruction[J]. Journal of Terahertz Science and Electronic Information Technology , 2020, 18(2): 298

    [4] Li Jiani, Zhang Baohua. Face Recognition by Feature Matching Fusion Combined with Improved Convolutional Neural Network[J]. Laser & Optoelectronics Progress, 2018, 55(10): 101504

    [5] Zhang Hao, Sang Qingbing. No Reference Video Quality Assessment Based on Transfer Learning[J]. Laser & Optoelectronics Progress, 2018, 55(9): 91101

    [6] Peng Yanfei, Wu Hong, Zi Lingling. Image Retrieval Based on Hash Method and Generative Adversarial Networks[J]. Laser & Optoelectronics Progress, 2018, 55(10): 101002

    [7] ZHANG Daming, HE Xiaohai, REN Chao, WU Xiaohong, LI Xinglong, FAN Meng. Image compression framework based on adaptive sub-sampling and super-resolution reconstruction[J]. Journal of Terahertz Science and Electronic Information Technology , 2020, 18(2): 298

    [8] He Zhichao, Zhao Longzhang, Chen Chuang. Convolution Neural Network with Multi-Resolution Feature Fusion for Facial Expression Recognition[J]. Laser & Optoelectronics Progress, 2018, 55(7): 71503

    Tools

    Get Citation

    Copy Citation Text

    Sumei Li, Guoqing Lei, Ru Fan. Depth Map Super-Resolution Reconstruction Based on Convolutional Neural Networks[J]. Acta Optica Sinica, 2017, 37(12): 1210002

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Image Processing

    Received: Jun. 20, 2017

    Accepted: --

    Published Online: Sep. 6, 2018

    The Author Email: Lei Guoqing (lgq20051118@163.com)

    DOI:10.3788/AOS201737.1210002

    Topics