Acta Optica Sinica, Volume. 37, Issue 12, 1210002(2017)

Depth Map Super-Resolution Reconstruction Based on Convolutional Neural Networks

Sumei Li, Guoqing Lei*, and Ru Fan
Author Affiliations
  • School of Electrical Automation and Information Engineering, Tianjin University, Tianjin 300072, China
  • show less
    Figures & Tables(10)
    Depth map super-resolution reconstruction network based on CNN
    Schematic of convolution processes
    Comparison of reconstruction results obtained from different network layers
    Comparison of reconstruction results obtained by different methods. (a)-(c) Original depth maps and corresponding partially enlarged maps; (d)-(f) depth maps of bicubic interpolation algorithm and corresponding partially enlarged maps; (g)-(i) depth maps of SRCNN algorithm and corresponding partially enlarged maps; (j)-(l) depth maps of proposed algorithm and corresponding partially enlarged maps
    • Table 1. Parameters setting of each convolution layer

      View table

      Table 1. Parameters setting of each convolution layer

      NameNumberSizePad
      Conv1563×31
      Conv2121×10
      Conv3123×31
      Conv4123×31
      Conv5123×31
      Conv6123×31
      Conv7561×10
    • Table 2. Comparison of different network layers

      View table

      Table 2. Comparison of different network layers

      Number of layersTime /sPSNR /dB
      792.70231.5321
      10113.07633.4809
      12127.04031.8638
    • Table 3. Quantitative comparison of different algorithms on the datasets

      View table

      Table 3. Quantitative comparison of different algorithms on the datasets

      Depth mapBicubic interpolation algorithmSRCNN algorithmProposed algorithm
      RMSEPSNRRMSEPSNRRMSEPSNR
      Art1.531331.30491.381432.91551.346433.4809
      Books1.133431.22271.132431.79961.038533.7587
      Moebius1.141231.99291.133432.64311.051334.6130
      Dolls1.105232.63891.104333.15481.101734.7382
      Laundry1.157233.62281.084834.83371.074436.1265
      Reindeer1.175832.65601.080634.21271.037335.5582
      Cones1.490529.60011.442530.49981.382032.1335
      Teddy1.465928.80761.395029.68201.343031.3920
      Venus0.561043.81800.507645.71490.501448.3748
    • Table 4. Quantitative comparison 1 of different algorithms on the dataset

      View table

      Table 4. Quantitative comparison 1 of different algorithms on the dataset

      AlgorithmArtBooksMoebius
      Bicubic4.1471.6731.449
      Ref. [18]3.7941.5461.439
      Ref. [5]3.4981.5301.349
      Ref. [9]3.7881.5721.434
      Ref. [11]3.7851.6031.458
      Proposed1.6921.2481.257
    • Table 5. Quantitative comparison 2 of different algorithms on the dataset

      View table

      Table 5. Quantitative comparison 2 of different algorithms on the dataset

      AlgorithmDollsLaundryReindeer
      Bicubic1.3052.4082.809
      Ref. [5]1.3012.1322.407
      Ref. [19]1.9772.9693.178
      Ref. [11]1.3552.5112.712
      Ref. [8]1.3502.2552.431
      Ref. [22]0.9891.6301.914
      Proposed1.2741.3111.275
    • Table 6. Quantitative comparison 3 of different algorithms on the dataset

      View table

      Table 6. Quantitative comparison 3 of different algorithms on the dataset

      AlgorithmVenusTeddyCones
      Ref. [5]1.84.895.64
      Ref. [12]3.554.926.34
      Ref. [11]2.523.34.45
      Ref. [14]0.821.822.97
      Ref. [22]1.192.033.08
      Ref. [13]1.141.802.13
      Proposed0.611.521.57
    Tools

    Get Citation

    Copy Citation Text

    Sumei Li, Guoqing Lei, Ru Fan. Depth Map Super-Resolution Reconstruction Based on Convolutional Neural Networks[J]. Acta Optica Sinica, 2017, 37(12): 1210002

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Image Processing

    Received: Jun. 20, 2017

    Accepted: --

    Published Online: Sep. 6, 2018

    The Author Email: Lei Guoqing (lgq20051118@163.com)

    DOI:10.3788/AOS201737.1210002

    Topics