Chinese Optics, Volume. 15, Issue 6, 1339(2022)
Classification model based on fusion of multi-scale feature and channel feature for benign and malignant brain tumors
[1] BRAY F, FERLAY J, SOERJOMATARAM I, et al. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries[J]. CA: A Cancer Journal for Clinicians, 68, 394-424(2018).
[2] BRAY F, FERLAY J, SOERJOMATARAM I, et al. Erratum: global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries[J]. CA:A Cancer Journal for Clinicians, 70, 313(2020).
[3] BAKAS S, AKBARI H, SOTIRAS A, et al. Advancing the cancer genome atlas glioma MRI collections with expert segmentation labels and radiomic features[J]. Scientific Data, 4, 170117(2017).
[4] MOHAN G, SUBASHINI M M. MRI based medical image analysis: survey on brain tumor grade classification[J]. Biomedical Signal Processing and Control, 39, 139-161(2018).
[5] [5] KHARRAT A, HALIMA M B, AYED M B. MRI brain tum classification using Suppt Vect Machines metaheuristic method[C]. IEEE 2015 15th International Conference on Intelligent Systems Design Applications (ISDA), IEEE, 2015: 446451.
[6] XU L, BAI J N, LI L M. Diagnosis of tumor in brain MR images based on GMM features and decision tree classifier[J]. Control Engineering of China, 24, 1718-1722(2017).
[7] RAJU A R, SURESH P, RAO R R. Bayesian HCS-based multi-SVNN: a classification approach for brain tumor segmentation and classification using Bayesian fuzzy clustering[J]. Biocybernetics and Biomedical Engineering, 38, 646-660(2018).
[8] [8] NARMATHA C, ELJACK S M, TUKA A A R M, et al. . A hybrid fuzzy brainstm optimization algithm f the classification of brain tum MRI images[J]. Journal of Ambient Intelligence Humanized Computing,doi: 10.1007s12652020024705.
[9] HUANG L H, CAO L H, LI N, . A state perception method for infrared dim and small targets with deep learning[J]. Chinese Optics, 13, 527-536(2020).
[10] ZHENG J P, YU P, ZHAO M, . Detection of myocardial amyloidosis by a small number of terahertz spectra with low signal-to-noise ratio[J]. Chinese Optics, 15, 443-453(2022).
[11] WU H B, WEI X Y, WANG A L, . X-ray security inspection images classification combined octave convolution and bidirectional GRU[J]. Chinese Optics, 13, 1138-1146(2020).
[12] LI Y, LIU X Y, ZHANG H Q, . Optical remote sensing image retrieval based on convolutional neural networks[J]. Optics and Precision Engineering, 26, 200-207(2018).
[13] CHEN X, ZHU X B, WU CH F, . Research on fundus image classification based on transfer learning and feature fusion[J]. Optics and Precision Engineering, 29, 388-399(2021).
[14] GNANASEKARAN V S, JOYPAUL S, SUNDARAM P M, et al. Deep learning algorithm for breast masses classification in mammograms[J]. IET Image Processing, 14, 2860-2868(2020).
[15] SHARIF M I, LI J P, KHAN M A, et al. Active deep neural network features selection for segmentation and recognition of brain tumors using MRI images[J]. Pattern Recognition Letters, 129, 181-189(2020).
[16] KHAN M A, ASHRAF I, ALHAISONI M, et al. Multimodal brain tumor classification using deep learning and robust feature selection: a machine learning application for radiologists[J]. Diagnostics, 10, 565(2020).
[17] REHMAN A, KHAN M A, SABA T, et al. Microscopic brain tumor detection and classification using 3D CNN and feature selection architecture[J]. Microscopy Research and Technique, 84, 133-149(2021).
[18] SEETHA J, RAJA S S. Brain tumor classification using Convolutional Neural Networks[J]. Biomedical and Pharmacology Journal, 11, 1457-1461(2018).
[19] ZHAO SH Y, WANG Y J. Brain glioma classification algorithm based on 3D CNN[J]. Optical Technique, 45, 749-755(2019).
[20] [20] XIE S N, GIRSHICK R, DOLLR P, et al. . Aggregated residual transfmations f deep neural wks[C]. 2017 IEEE Conference on Computer Vision Pattern Recognition (CVPR), IEEE, 2017: 59875995.
[21] [21] SZEGEDY C, VANHOUCKE V, IOFFE S, et al. . Rethinking the inception architecture f computer vision[C]. 2016 IEEE Conference on Computer Vision Pattern Recognition (CVPR), IEEE, 2016: 28182826.
[22] [22] HE K M, ZHANG X Y, REN SH Q, et al. . Deep residual learning f image recognition[C]. 2016 IEEE Conference on Computer Vision Pattern Recognition (CVPR), IEEE, 2016: 770778.
[23] [23] YU F, KOLTUN V. Multiscale context aggregation by dilated convolutions[C]. 4th International Conference on Learning Representations, 2016: https:doi.g10.48550arXiv.1511.07122.
[24] [24] WOO S, PARK J, LEE J Y, et al. . CBAM: convolutional block attention module[C]. Proceedings of the 15th European Conference on Computer Vision, Springer, 2018: 319.
[25] JIANG L Q, NING CH Y, LI J Y. Glioma classification framework based on SE-ResNeXt network and its optimization[J]. IET Image Processing, 16, 596-605(2022).
[26] CHENG J, HUANG W, CAO SH L, et al. Enhanced performance of brain tumor classification via tumor region augmentation and partition[J]. PLoS One, 10, e0140381(2015).
[27] VOVK U, PERNUS F, LIKAR B. A review of methods for correction of intensity inhomogeneity in MRI[J]. IEEE Transactions on Medical Imaging, 26, 405-421(2007).
[28] TUSTISON N J, AVANTS B B, COOK P A, et al. N4ITK: improved N3 bias correction[J]. IEEE Transactions on Medical Imaging, 29, 1310-1320(2010).
[29] [29] ZHONG ZH, ZHENG L, KANG G L, et al. . Rom erasing data augmentation[C]. Proceedings of the 34th AAAI Conference on Artificial Intelligence, AAAI, 2020: 1300113008.
[30] [30] HU J, SHEN L, SUN G. Squeezeexcitation wks[C]. 2018 IEEECVF Conference on Computer Vision Pattern Recognition (CVPR), IEEE, 2018: 71327141.
Get Citation
Copy Citation Text
Lin-qi JIANG, Chun-yu NING, Hai-tao YU. Classification model based on fusion of multi-scale feature and channel feature for benign and malignant brain tumors[J]. Chinese Optics, 2022, 15(6): 1339
Category: Original Article
Received: Apr. 12, 2022
Accepted: Aug. 24, 2022
Published Online: Feb. 9, 2023
The Author Email: