Chinese Optics, Volume. 15, Issue 6, 1339(2022)

Classification model based on fusion of multi-scale feature and channel feature for benign and malignant brain tumors

Lin-qi JIANG, Chun-yu NING*, and Hai-tao YU
Author Affiliations
  • School of Life Science and Technology, Changchun University of Science and Technology, Changchun 130022, China
  • show less
    Figures & Tables(17)
    MDCA-ResNeXt network structure
    ResNeXt structure with [20]的ResNeXt结构[20]
    Dilated convolution results with different dilation rates
    MD module
    CA module
    HGG images in four modalities
    LGG images in four modalities
    Comparison before and after preprocessing
    Evaluation diagram of classification results for three kinds of Nets
    Original image and feature visualizations of HGG
    Original image and feature visualization of LGG
    • Table 1. Distribution of experimental datasets

      View table
      View in Article

      Table 1. Distribution of experimental datasets

      数据集肿瘤 类别 数据分布总数
      训练集测试集
      BraTS2017 数据集 HGG8402101050
      LGG9002251125
      BraTS2019 数据集 HGG10352601295
      LGG9152251140
    • Table 2. Evaluation of classification results on BraTS2017 before optimization

      View table
      View in Article

      Table 2. Evaluation of classification results on BraTS2017 before optimization

      网络ACC(%)SEN(%)SPE(%)PPV(%)NPV(%)
      ResNet89.15±1.8388.76±3.3889.51±3.3888.92±3.6789.60±2.58
      SENet90.44±3.2593.05±2.0989.25±7.4188.21±5.6993.19±1.77
      ResNeXt90.34±1.1489.23±3.3692.53±2.1891.85±1.9690.22±2.57
      MDCA-ResNeXt93.19±0.3593.05±1.6793.33±1.6992.91±1.5493.54±1.36
    • Table 3. Evaluation of classification results on BraTS2019 before optimization

      View table
      View in Article

      Table 3. Evaluation of classification results on BraTS2019 before optimization

      网络ACC(%)SEN(%)SPE(%)PPV(%)NPV(%)
      ResNet91.83±2.7393.31±2.1290.13±4.5991.71±3.6592.10±2.51
      SENet91.91±2.4290.54±5.6391.74±4.8393.00±3.7693.25±2.54
      ResNeXt93.57±1.5094.23±2.0292.80±2.9993.85±2.3193.35±2.15
      MDCA-ResNeXt94.10±1.4094.38±1.6793.78±2.3394.76±2.1293.60±1.59
    • Table 4. Evaluation of classification results on BraTS2017 after optimization

      View table
      View in Article

      Table 4. Evaluation of classification results on BraTS2017 after optimization

      网络ACC(%)SEN(%)SPE(%)PPV(%)NPV(%)
      Improved ResNet96.87±1.4996.76±0.7196.98±2.9096.84±2.9796.98±0.64
      Improved SENet97.56±1.0496.67±0.8998.40±1.4398.27±1.5296.94±0.83
      Improved ResNeXt97.98±1.3397.43±2.0698.49±1.2898.38±1.3997.63±1.88
      Improved MDCA-ResNeXt98.11±0.4197.43±0.2698.76±0.9198.66±0.9797.63±0.22
    • Table 5. Evaluation of classification results on BraTS2019 after optimization

      View table
      View in Article

      Table 5. Evaluation of classification results on BraTS2019 after optimization

      网络ACC(%)SEN(%)SPE(%)PPV(%)NPV(%)
      Improved ResNet97.03±1.9597.31±2.0296.62±3.0497.20±2.5596.91±2.23
      Improved SENet96.69±0.8894.38±1.8998.74±0.9398.62±1.0194.99±1.57
      Improved ResNeXt97.98±0.5797.69±0.4798.31±0.7398.53±0.6497.36±0.54
      Improved MDCA-ResNeXt98.72±0.3198.62±0.6498.85±0.5199.00±0.4498.41±0.73
    • Table 6. Comparison of classification results of advanced methods

      View table
      View in Article

      Table 6. Comparison of classification results of advanced methods

      文献方法肿瘤分割数据集准确率(%)
      文献[7] HCS+ Multi-SVNNBraTs201493.00
      文献[15] Inception V3+POSBraTs201796.90
      文献[16] VGG16+ELMBraTs201796.90
      文献[17] 3D CNN+VGG19+FNNBraTs201796.97
      文献[8] FBSOBraTs201893.85
      文献[19] 3D U-NetBraTs201891.67
      本文方法Improved MDCA-ResNeXtBraTs201798.11
      BraTs201998.72
    Tools

    Get Citation

    Copy Citation Text

    Lin-qi JIANG, Chun-yu NING, Hai-tao YU. Classification model based on fusion of multi-scale feature and channel feature for benign and malignant brain tumors[J]. Chinese Optics, 2022, 15(6): 1339

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Original Article

    Received: Apr. 12, 2022

    Accepted: Aug. 24, 2022

    Published Online: Feb. 9, 2023

    The Author Email:

    DOI:10.37188/CO.2022-0067

    Topics