Infrared and Laser Engineering, Volume. 51, Issue 11, 20220622(2022)

Application of super-resolution microscopy in the study of organelle interactions (invited)

Taiqiang Dai1,2,3,4, Ye Gao1,2,3,4, Ying Ma5, Bolei Cai1,2,3,4, Fuwei Liu1,2,3,4, Boling He1,2,3,4, Jie Yu1,2,3,4, Yan Hou1,2,3,4, Peng Gao5, and Liang Kong1,2,3,4、*
Author Affiliations
  • 1State Key Laboratory of Military Stomatology, Xi’an 710032, China
  • 2National Clinical Research Center for Oral Diseases, Xi’an 710032, China
  • 3Shaanxi Clinical Research Center for Oral Diseases, Xi’an 710032, China
  • 4Department of Oral and Maxillofacial Surgery, School of Stomatology, The Fourth Military Medical University, Xi’an 710032, China
  • 5School of Physics, Xidian University, Xi’an 710171, China
  • show less
    References(70)

    [1] Yang Z, Samanta S, Yan W, et al. Super-resolution microscopy for biological imaging[J]. Adv Exp Med Biol, 3233, 23-43(2021).

    [2] Heald R, Cohen-Fix O. Morphology and function of membrane-bound organelles[J]. Curr Opin Cell Biol, 26, 79-86(2014).

    [3] Yang Z, Zhang Z, Zhao Y, et al. Organelle interaction and drug discovery: Towards correlative nanoscopy and molecular dynamics simulation[J]. Front Pharmacol, 13, 935898(2022).

    [4] Lemon W C, Mcdole K. Live-cell imaging in the era of too many microscopes[J]. Curr Opin Cell Biol, 66, 34-42(2020).

    [5] Lboukili I, Stamatas G, Descombes X. Automating reflectance confocal microscopy image analysis for dermatological research: A review[J]. J Biomed Opt, 27, 070902(2022).

    [6] Bourzac K. Cell imaging: Beyond the limits[J]. Nature, 526, S50-S54(2015).

    [7] Arizono M, Idziak A, Quici F, et al. Getting sharper: The brain under the spotlight of super-resolution microscopy[J]. Trends Cell Biol, S0962-8924, 00150-7(2022).

    [8] Hu Chunguang, Zha Ridong, Ling Qiuyu, et al. Super-resolution microscopy applications and development in living cell[J]. Infrared and Laser Engineering, 46, 1103002(2017).

    [9] Lu M, Ward E, van Tartwijk F W, et al. Advances in the study of organelle interactions and their role in neurodegenerative diseases enabled by super-resolution microscopy[J]. Neurobiol Dis, 159, 105475(2021).

    [10] Friedman J R, Lackner L L, West M, et al. ER tubules mark sites of mitochondrial division[J]. Science, 334, 358-362(2011).

    [11] Rowland A A, Chitwood P J, Phillips M J, et al. ER contact sites define the position and timing of endosome fission[J]. Cell, 159, 1027-1041(2014).

    [12] Lee J E, Cathey P I, Wu H, et al. Endoplasmic reticulum contact sites regulate the dynamics of membraneless organelles[J]. Science, 367, eaay7108(2020).

    [13] Daniele T, Schiaffino M V. Organelle biogenesis and interorganellar connections: Better in contact than in isolation[J]. Commun Integr Biol, 7, e29587(2014).

    [14] Peng W, Wong Y C, Krainc D. Mitochondria-lysosome contacts regulate mitochondrial Ca2+ dynamics via lysosomal TRPML1[J]. Proc Natl Acad Sci U S A, 117, 19266-19275(2020).

    [15] Lu M, van Tartwijk F W, Lin J Q, et al. The structure and global distribution of the endoplasmic reticulum network are actively regulated by lysosomes[J]. Sci Adv, 6, eabc7209(2020).

    [16] Hell S W, Wichmann J. Breaking the diffraction resolution limit by stimulated emission: Stimulated-emission-depletion fluorescence microscopy[J]. Opt Lett, 19, 780-782(1994).

    [17] [17] Gustafsson M G. Surpassing the lateral resolution limit by a fact of two using structured illumination microscopy[J]. J Microsc, 2000, 198(Pt2): 8287.

    [18] Betzig E, Patterson G H, Sougrat R, et al. Imaging intracellular fluorescent proteins at nanometer resolution[J]. Science, 313, 1642-1645(2006).

    [19] [19] Sigal Y M, Zhou R, Zhuang X. Visualizing discovering cellular structures with superresolution microscopy [J]. Science, 2018, 361(6405): 880887.

    [20] Klar T A, Hell S W. Subdiffraction resolution in far-field fluorescence microscopy[J]. Opt Lett, 24, 954-956(1999).

    [21] Liu S, Hoess P, Ries J. Super-resolution microscopy for structural cell biology[J]. Annu Rev Biophys, 51, 301-326(2022).

    [22] Zhou Hanqiu, Zhu Yinru, Han Hongyi, et al. Research progress of live cell and in vivo super-resolution imaging based on STED[J]. Progress in Biochemistry and Biophysics, 49, 1-20(2022).

    [23] Gustafsson M G. Nonlinear structured-illumination microscopy: wide-field fluorescence imaging with theoretically unlimited resolution[J]. Proc Natl Acad Sci U S A, 102, 13081-13086(2005).

    [24] Rego E H, Shao L, Macklin J J, et al. Nonlinear structured-illumination microscopy with a photoswitchable protein reveals cellular structures at 50-nm resolution[J]. Proc Natl Acad Sci U S A, 109, E135-E143(2012).

    [25] Ströhl F, Kaminski C F. Frontiers in structured illumination microscopy[J]. Optica, 3, 667(2016).

    [26] Valli J, Garcia-Burgos A, Rooney L M, et al. Seeing beyond the limit: A guide to choosing the right super-resolution microscopy technique[J]. J Biol Chem, 297, 100791(2021).

    [27] Chen Ting-ai, Chen Long-chao, et al. Structured illumination super-resolution microscopy technology: review and prospect[J]. Chinese Optics, 11, 307-328(2018).

    [28] Castello M, Sheppard C J, Diaspro A, et al. Image scanning microscopy with a quadrant detector[J]. Opt Lett, 40, 5355-5358(2015).

    [29] Sheppard C J, Mehta S B, Heintzmann R. Superresolution by image scanning microscopy using pixel reassignment[J]. Opt Lett, 38, 2889-2892(2013).

    [30] Sauer M, Heilemann M. Single-molecule localization microscopy in eukaryotes[J]. Chem Rev, 117, 7478-7509(2017).

    [31] Huang B, Bates M, Zhuang X. Super-resolution fluorescence microscopy[J]. Annu Rev Biochem, 78, 993-1016(2009).

    [32] Rust M J, Bates M, Zhuang X. Sub-diffraction-limit imaging by stochastic optical reconstruction microscopy (STORM)[J]. Nat Methods, 3, 793-795(2006).

    [33] An Sha, Dan Dan, Yu Xiang-hua, et al. Progress and prospect of research on single-molecule localization super-resolution microscopy (Invited Review)[J]. Acta Photonica Sinica, 49, 0918001(2020).

    [34] Caicedo A, Aponte P M, Cabrera F, et al. Artificial mitochondria transfer: Current challenges, advances, and future applications[J]. Stem Cells Int, 2017, 7610414(2017).

    [35] Wang Y, Li L, Hou C, et al. SNARE-mediated membrane fusion in autophagy[J]. Semin Cell Dev Biol, 60, 97-104(2016).

    [36] [36] Wong Y C, Ysselstein D, Krainc D. Mitochondrialysosome contacts regulate mitochondrial fission via RAB7GTP hydrolysis [J]. Nature, 2018, 554(7692): 382386.

    [37] Boutry M, Kim P K. ORP1L mediated PI(4)P signaling at ER-lysosome-mitochondrion three-way contact contributes to mitochondrial division[J]. Nat Commun, 12, 5354(2021).

    [38] Chen Q, Shao X, Hao M, et al. Quantitative analysis of interactive behavior of mitochondria and lysosomes using structured illumination microscopy[J]. Biomaterials, 250, 120059(2020).

    [39] Wang H, Fang G, Chen H, et al. Lysosome-targeted biosensor for the super-resolution imaging of lysosome-mitochondrion interaction[J]. Front Pharmacol, 13, 865173(2022).

    [40] Maruyama D, Ohtsu M, Higashiyama T. Cell fusion and nuclear fusion in plants[J]. Semin Cell Dev Biol, 60, 127-135(2016).

    [41] Eisenberg-Bord M, Zung N, Collado J, et al. Cnm1 mediates nucleus-mitochondria contact site formation in response to phospholipid levels[J]. J Cell Biol, 220, e202104100(2021).

    [42] Desai R, East D A, Hardy L, et al. Mitochondria form contact sites with the nucleus to couple prosurvival retrograde response[J]. Sci Adv, 6, eabc9955(2020).

    [43] Michishita E, Park J Y, Burneskis J M, et al. Evolutionarily conserved and nonconserved cellular localizations and functions of human SIRT proteins[J]. Mol Biol Cell, 16, 4623-4635(2005).

    [44] Ramadani-Muja J, Gottschalk B, Pfeil K, et al. Visualization of sirtuin 4 distribution between mitochondria and the nucleus, Based on bimolecular fluorescence self-complementation[J]. Cells, 8, 1583(2019).

    [45] Ivanov A I, Le H T, Naydenov N G, et al. Novel functions of the septin cytoskeleton: Shaping Up tissue inflammation and fibrosis[J]. Am J Pathol, 191, 40-51(2021).

    [46] Weber K, Osborn M. Cytoskeleton: definition, structure and gene regulation[J]. Pathol Res Pract, 175, 128-145(1982).

    [47] Kuznetsov A V, Javadov S, Grimm M, et al. Crosstalk between mitochondria and cytoskeleton in cardiac cells[J]. Cells, 9, 222(2020).

    [48] Moore A S, Coscia S M, Simpson C L, et al. Actin cables and comet tails organize mitochondrial networks in mitosis[J]. Nature, 591, 659-664(2021).

    [49] Shi P, Wang Y, Huang Y, et al. Arp2/3-branched actin regulates microtubule acetylation levels and affects mitochondrial distribution[J]. J Cell Sci, 132, jcs226506(2019).

    [50] Mehta K, Chacko L A, Chug M K, et al. Association of mitochondria with microtubules inhibits mitochondrial fission by precluding assembly of the fission protein Dnm1[J]. J Biol Chem, 294, 3385-3396(2019).

    [51] Rambold A S, Cohen S, Lippincott-Schwartz J. Fatty acid trafficking in starved cells: Regulation by lipid droplet lipolysis, autophagy, and mitochondrial fusion dynamics[J]. Dev Cell, 32, 678-692(2015).

    [52] Li Z, Thiel K, Thul P J, et al. Lipid droplets control the maternal histone supply of Drosophila embryos[J]. Curr Biol, 22, 2104-2113(2012).

    [53] Murphy D J. The biogenesis and functions of lipid bodies in animals, plants and microorganisms[J]. Prog Lipid Res, 40, 325-438(2001).

    [54] Walther T C, Chung J, Farese R J. Lipid droplet biogenesis[J]. Annu Rev Cell Dev Biol, 33, 491-510(2017).

    [55] Pribasnig M, Kien B, Pusch L, et al. Extended-resolution imaging of the interaction of lipid droplets and mitochondria[J]. Biochim Biophys Acta Mol Cell Biol Lipids, 1863, 1285-1296(2018).

    [56] Gemmink A, Daemen S, Kuijpers H, et al. Super-resolution microscopy localizes perilipin 5 at lipid droplet-mitochondria interaction sites and at lipid droplets juxtaposing to perilipin 2[J]. Biochim Biophys Acta Mol Cell Biol Lipids, 1863, 1423-1432(2018).

    [57] Perkins H T, Allan V. Intertwined and finely balanced: Endoplasmic reticulum morphology, Dynamics, Function, and Diseases[J]. Cells, 10, 2341(2021).

    [58] Valm A M, Cohen S, Legant W R, et al. Applying systems-level spectral imaging and analysis to reveal the organelle interactome[J]. Nature, 546, 162-167(2017).

    [59] Reggiori F, Molinari M. ER-phagy: Mechanisms, regulation, and diseases connected to the lysosomal clearance of the endoplasmic reticulum[J]. Physiol Rev, 102, 1393-1448(2022).

    [60] Georgiades P, Allan V J, Wright G D, et al. The flexibility and dynamics of the tubules in the endoplasmic reticulum[J]. Sci Rep, 7, 16474(2017).

    [61] Jung M, Mun J Y. Mitochondria and endoplasmic reticulum imaging by correlative light and volume electron microscopy[J]. J Vis Exp, 149, e59750(2019).

    [62] Nixon-Abell J, Obara C J, Weigel A V, et al. Increased spatiotemporal resolution reveals highly dynamic dense tubular matrices in the peripheral ER[J]. Science, 354, aaf3928(2016).

    [63] Schroeder L K, Barentine A, Merta H, et al. Dynamic nanoscale morphology of the ER surveyed by STED microscopy[J]. J Cell Biol, 218, 83-96(2019).

    [64] Guo Y, Li D, Zhang S, et al. Visualizing intracellular organelle and cytoskeletal interactions at nanoscale resolution on millisecond timescales[J]. Cell, 175, 1430-1442(2018).

    [65] Lewis S C, Uchiyama L F, Nunnari J. ER-mitochondria contacts couple mtDNA synthesis with mitochondrial division in human cells[J]. Science, 353, f5549(2016).

    [66] Qiao C, Li D, Guo Y, et al. Evaluation and development of deep neural networks for image super-resolution in optical microscopy[J]. Nat Methods, 18, 194-202(2021).

    [67] Gottschalk B, Klec C, Waldeck-Weiermair M, et al. Intracellular Ca2+ release decelerates mitochondrial cristae dynamics within the junctions to the endoplasmic reticulum[J]. Pflugers Arch, 470, 1193-1203(2018).

    [68] Filipe A, Chernorudskiy A, Arbogast S, et al. Defective endoplasmic reticulum-mitochondria contacts and bioenergetics in SEPN1-related myopathy[J]. Cell Death Differ, 28, 123-138(2021).

    [69] Raiborg C, Wenzel E M, Pedersen N M, et al. Repeated ER-endosome contacts promote endosome translocation and neurite outgrowth[J]. Nature, 520, 234-238(2015).

    [70] Pavez M, Thompson A C, Arnott H J, et al. STIM1 Is required for remodeling of the endoplasmic reticulum and microtubule cytoskeleton in steering growth cones[J]. J Neurosci, 39, 5095-5114(2019).

    Tools

    Get Citation

    Copy Citation Text

    Taiqiang Dai, Ye Gao, Ying Ma, Bolei Cai, Fuwei Liu, Boling He, Jie Yu, Yan Hou, Peng Gao, Liang Kong. Application of super-resolution microscopy in the study of organelle interactions (invited)[J]. Infrared and Laser Engineering, 2022, 51(11): 20220622

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Special issue-Fluorescence microscopy: techniques and applications

    Received: Aug. 31, 2022

    Accepted: --

    Published Online: Feb. 9, 2023

    The Author Email: Liang Kong (liangkong2014@163.com)

    DOI:10.3788/IRLA20220622

    Topics