Infrared and Laser Engineering, Volume. 51, Issue 11, 20220622(2022)
Application of super-resolution microscopy in the study of organelle interactions (invited)
[1] Z Yang, S Samanta, W Yan, et al. Super-resolution microscopy for biological imaging. Adv Exp Med Biol, 3233, 23-43(2021).
[2] R Heald, O Cohen-Fix. Morphology and function of membrane-bound organelles. Curr Opin Cell Biol, 26, 79-86(2014).
[3] Z Yang, Z Zhang, Y Zhao, et al. Organelle interaction and drug discovery: Towards correlative nanoscopy and molecular dynamics simulation. Front Pharmacol, 13, 935898(2022).
[4] W C Lemon, K Mcdole. Live-cell imaging in the era of too many microscopes. Curr Opin Cell Biol, 66, 34-42(2020).
[5] I Lboukili, G Stamatas, X Descombes. Automating reflectance confocal microscopy image analysis for dermatological research: A review. J Biomed Opt, 27, 070902(2022).
[6] K Bourzac. Cell imaging: Beyond the limits. Nature, 526, S50-S54(2015).
[7] M Arizono, A Idziak, F Quici, et al. Getting sharper: The brain under the spotlight of super-resolution microscopy. Trends Cell Biol, S0962-8924, 00150-7(2022).
[8] Chunguang Hu, Ridong Zha, Qiuyu Ling, et al. Super-resolution microscopy applications and development in living cell. Infrared and Laser Engineering, 46, 1103002(2017).
[9] M Lu, E Ward, Tartwijk F W van, et al. Advances in the study of organelle interactions and their role in neurodegenerative diseases enabled by super-resolution microscopy. Neurobiol Dis, 159, 105475(2021).
[10] J R Friedman, L L Lackner, M West, et al. ER tubules mark sites of mitochondrial division. Science, 334, 358-362(2011).
[11] A A Rowland, P J Chitwood, M J Phillips, et al. ER contact sites define the position and timing of endosome fission. Cell, 159, 1027-1041(2014).
[12] J E Lee, P I Cathey, H Wu, et al. Endoplasmic reticulum contact sites regulate the dynamics of membraneless organelles. Science, 367, eaay7108(2020).
[13] T Daniele, M V Schiaffino. Organelle biogenesis and interorganellar connections: Better in contact than in isolation. Commun Integr Biol, 7, e29587(2014).
[14] W Peng, Y C Wong, D Krainc. Mitochondria-lysosome contacts regulate mitochondrial Ca2+ dynamics via lysosomal TRPML1. Proc Natl Acad Sci U S A, 117, 19266-19275(2020).
[15] M Lu, Tartwijk F W van, J Q Lin, et al. The structure and global distribution of the endoplasmic reticulum network are actively regulated by lysosomes. Sci Adv, 6, eabc7209(2020).
[16] S W Hell, J Wichmann. Breaking the diffraction resolution limit by stimulated emission: Stimulated-emission-depletion fluorescence microscopy. Opt Lett, 19, 780-782(1994).
[17] [17] Gustafsson M G. Surpassing the lateral resolution limit by a fact of two using structured illumination microscopy[J]. J Microsc, 2000, 198(Pt2): 8287.
[18] E Betzig, G H Patterson, R Sougrat, et al. Imaging intracellular fluorescent proteins at nanometer resolution. Science, 313, 1642-1645(2006).
[19] [19] Sigal Y M, Zhou R, Zhuang X. Visualizing discovering cellular structures with superresolution microscopy [J]. Science, 2018, 361(6405): 880887.
[20] T A Klar, S W Hell. Subdiffraction resolution in far-field fluorescence microscopy. Opt Lett, 24, 954-956(1999).
[21] S Liu, P Hoess, J Ries. Super-resolution microscopy for structural cell biology. Annu Rev Biophys, 51, 301-326(2022).
[22] Hanqiu Zhou, Yinru Zhu, Hongyi Han, et al. Research progress of live cell and in vivo super-resolution imaging based on STED. Progress in Biochemistry and Biophysics, 49, 1-20(2022).
[23] M G Gustafsson. Nonlinear structured-illumination microscopy: wide-field fluorescence imaging with theoretically unlimited resolution. Proc Natl Acad Sci U S A, 102, 13081-13086(2005).
[24] E H Rego, L Shao, J J Macklin, et al. Nonlinear structured-illumination microscopy with a photoswitchable protein reveals cellular structures at 50-nm resolution. Proc Natl Acad Sci U S A, 109, E135-E143(2012).
[25] F Ströhl, C F Kaminski. Frontiers in structured illumination microscopy. Optica, 3, 667(2016).
[26] J Valli, A Garcia-Burgos, L M Rooney, et al. Seeing beyond the limit: A guide to choosing the right super-resolution microscopy technique. J Biol Chem, 297, 100791(2021).
[27] Ting-ai Chen, Long-chao Chen, et al. Structured illumination super-resolution microscopy technology: review and prospect. Chinese Optics, 11, 307-328(2018).
[28] M Castello, C J Sheppard, A Diaspro, et al. Image scanning microscopy with a quadrant detector. Opt Lett, 40, 5355-5358(2015).
[29] C J Sheppard, S B Mehta, R Heintzmann. Superresolution by image scanning microscopy using pixel reassignment. Opt Lett, 38, 2889-2892(2013).
[30] M Sauer, M Heilemann. Single-molecule localization microscopy in eukaryotes. Chem Rev, 117, 7478-7509(2017).
[31] B Huang, M Bates, X Zhuang. Super-resolution fluorescence microscopy. Annu Rev Biochem, 78, 993-1016(2009).
[32] M J Rust, M Bates, X Zhuang. Sub-diffraction-limit imaging by stochastic optical reconstruction microscopy (STORM). Nat Methods, 3, 793-795(2006).
[33] Sha An, Dan Dan, Xiang-hua Yu, et al. Progress and prospect of research on single-molecule localization super-resolution microscopy (Invited Review). Acta Photonica Sinica, 49, 0918001(2020).
[34] A Caicedo, P M Aponte, F Cabrera, et al. Artificial mitochondria transfer: Current challenges, advances, and future applications. Stem Cells Int, 2017, 7610414(2017).
[35] Y Wang, L Li, C Hou, et al. SNARE-mediated membrane fusion in autophagy. Semin Cell Dev Biol, 60, 97-104(2016).
[36] [36] Wong Y C, Ysselstein D, Krainc D. Mitochondrialysosome contacts regulate mitochondrial fission via RAB7GTP hydrolysis [J]. Nature, 2018, 554(7692): 382386.
[37] M Boutry, P K Kim. ORP1L mediated PI(4)P signaling at ER-lysosome-mitochondrion three-way contact contributes to mitochondrial division. Nat Commun, 12, 5354(2021).
[38] Q Chen, X Shao, M Hao, et al. Quantitative analysis of interactive behavior of mitochondria and lysosomes using structured illumination microscopy. Biomaterials, 250, 120059(2020).
[39] H Wang, G Fang, H Chen, et al. Lysosome-targeted biosensor for the super-resolution imaging of lysosome-mitochondrion interaction. Front Pharmacol, 13, 865173(2022).
[40] D Maruyama, M Ohtsu, T Higashiyama. Cell fusion and nuclear fusion in plants. Semin Cell Dev Biol, 60, 127-135(2016).
[41] M Eisenberg-Bord, N Zung, J Collado, et al. Cnm1 mediates nucleus-mitochondria contact site formation in response to phospholipid levels. J Cell Biol, 220, e202104100(2021).
[42] R Desai, D A East, L Hardy, et al. Mitochondria form contact sites with the nucleus to couple prosurvival retrograde response. Sci Adv, 6, eabc9955(2020).
[43] E Michishita, J Y Park, J M Burneskis, et al. Evolutionarily conserved and nonconserved cellular localizations and functions of human SIRT proteins. Mol Biol Cell, 16, 4623-4635(2005).
[44] J Ramadani-Muja, B Gottschalk, K Pfeil, et al. Visualization of sirtuin 4 distribution between mitochondria and the nucleus, Based on bimolecular fluorescence self-complementation. Cells, 8, 1583(2019).
[45] A I Ivanov, H T Le, N G Naydenov, et al. Novel functions of the septin cytoskeleton: Shaping Up tissue inflammation and fibrosis. Am J Pathol, 191, 40-51(2021).
[46] K Weber, M Osborn. Cytoskeleton: definition, structure and gene regulation. Pathol Res Pract, 175, 128-145(1982).
[47] A V Kuznetsov, S Javadov, M Grimm, et al. Crosstalk between mitochondria and cytoskeleton in cardiac cells. Cells, 9, 222(2020).
[48] A S Moore, S M Coscia, C L Simpson, et al. Actin cables and comet tails organize mitochondrial networks in mitosis. Nature, 591, 659-664(2021).
[49] P Shi, Y Wang, Y Huang, et al. Arp2/3-branched actin regulates microtubule acetylation levels and affects mitochondrial distribution. J Cell Sci, 132, jcs226506(2019).
[50] K Mehta, L A Chacko, M K Chug, et al. Association of mitochondria with microtubules inhibits mitochondrial fission by precluding assembly of the fission protein Dnm1. J Biol Chem, 294, 3385-3396(2019).
[51] A S Rambold, S Cohen, J Lippincott-Schwartz. Fatty acid trafficking in starved cells: Regulation by lipid droplet lipolysis, autophagy, and mitochondrial fusion dynamics. Dev Cell, 32, 678-692(2015).
[52] Z Li, K Thiel, P J Thul, et al. Lipid droplets control the maternal histone supply of Drosophila embryos. Curr Biol, 22, 2104-2113(2012).
[53] D J Murphy. The biogenesis and functions of lipid bodies in animals, plants and microorganisms. Prog Lipid Res, 40, 325-438(2001).
[54] T C Walther, J Chung, R J Farese. Lipid droplet biogenesis. Annu Rev Cell Dev Biol, 33, 491-510(2017).
[55] M Pribasnig, B Kien, L Pusch, et al. Extended-resolution imaging of the interaction of lipid droplets and mitochondria. Biochim Biophys Acta Mol Cell Biol Lipids, 1863, 1285-1296(2018).
[56] A Gemmink, S Daemen, H Kuijpers, et al. Super-resolution microscopy localizes perilipin 5 at lipid droplet-mitochondria interaction sites and at lipid droplets juxtaposing to perilipin 2. Biochim Biophys Acta Mol Cell Biol Lipids, 1863, 1423-1432(2018).
[57] H T Perkins, V Allan. Intertwined and finely balanced: Endoplasmic reticulum morphology, Dynamics, Function, and Diseases. Cells, 10, 2341(2021).
[58] A M Valm, S Cohen, W R Legant, et al. Applying systems-level spectral imaging and analysis to reveal the organelle interactome. Nature, 546, 162-167(2017).
[59] F Reggiori, M Molinari. ER-phagy: Mechanisms, regulation, and diseases connected to the lysosomal clearance of the endoplasmic reticulum. Physiol Rev, 102, 1393-1448(2022).
[60] P Georgiades, V J Allan, G D Wright, et al. The flexibility and dynamics of the tubules in the endoplasmic reticulum. Sci Rep, 7, 16474(2017).
[61] M Jung, J Y Mun. Mitochondria and endoplasmic reticulum imaging by correlative light and volume electron microscopy. J Vis Exp, 149, e59750(2019).
[62] J Nixon-Abell, C J Obara, A V Weigel, et al. Increased spatiotemporal resolution reveals highly dynamic dense tubular matrices in the peripheral ER. Science, 354, aaf3928(2016).
[63] L K Schroeder, A Barentine, H Merta, et al. Dynamic nanoscale morphology of the ER surveyed by STED microscopy. J Cell Biol, 218, 83-96(2019).
[64] Y Guo, D Li, S Zhang, et al. Visualizing intracellular organelle and cytoskeletal interactions at nanoscale resolution on millisecond timescales. Cell, 175, 1430-1442(2018).
[65] S C Lewis, L F Uchiyama, J Nunnari. ER-mitochondria contacts couple mtDNA synthesis with mitochondrial division in human cells. Science, 353, f5549(2016).
[66] C Qiao, D Li, Y Guo, et al. Evaluation and development of deep neural networks for image super-resolution in optical microscopy. Nat Methods, 18, 194-202(2021).
[67] B Gottschalk, C Klec, M Waldeck-Weiermair, et al. Intracellular Ca
[68] A Filipe, A Chernorudskiy, S Arbogast, et al. Defective endoplasmic reticulum-mitochondria contacts and bioenergetics in SEPN1-related myopathy. Cell Death Differ, 28, 123-138(2021).
[69] C Raiborg, E M Wenzel, N M Pedersen, et al. Repeated ER-endosome contacts promote endosome translocation and neurite outgrowth. Nature, 520, 234-238(2015).
[70] M Pavez, A C Thompson, H J Arnott, et al. STIM1 Is required for remodeling of the endoplasmic reticulum and microtubule cytoskeleton in steering growth cones. J Neurosci, 39, 5095-5114(2019).
Get Citation
Copy Citation Text
Taiqiang Dai, Ye Gao, Ying Ma, Bolei Cai, Fuwei Liu, Boling He, Jie Yu, Yan Hou, Peng Gao, Liang Kong. Application of super-resolution microscopy in the study of organelle interactions (invited)[J]. Infrared and Laser Engineering, 2022, 51(11): 20220622
Category: Special issue-Fluorescence microscopy: techniques and applications
Received: Aug. 31, 2022
Accepted: --
Published Online: Feb. 9, 2023
The Author Email: Kong Liang (liangkong2014@163.com)