Chinese Journal of Lasers, Volume. 47, Issue 3, 313001(2020)
Hybrid Surface-Plasmon Waveguide with Symmetrical Triangular Ribs
[1] Koenderink A F, Alu A, Polman A. Nanophotonics: shrinking light-based technology[J]. Science, 348, 516-521(2015).
[2] Kinsey N, Ferrera M, Shalaev V M et al. Examining nanophotonics for integrated hybrid systems: a review of plasmonic interconnects and modulators using traditional and alternative materials [Invited][J]. Journal of the Optical Society of America B, 32, 121-142(2015).
[3] Gramotnev D K, Bozhevolnyi S I. Plasmonics beyond the diffraction limit[J]. Nature Photonics, 4, 83-91(2010).
[4] Boltasseva A, Volkov V S, Nielsen R B et al. Triangular metal wedges for subwavelength plasmon-polariton guiding at telecom wavelengths[J]. Optics Express, 16, 5252-5260(2008).
[6] Guo J P, Adato R. Control of 2D plasmon-polariton mode with dielectric nanolayers[J]. Optics Express, 16, 1232-1237(2008).
[7] Moreno E, Rodrigo S G, Bozhevolnyi S I et al. Guiding and focusing of electromagnetic fields with wedge plasmon polaritons[J]. Physical Review Letters, 100, 023901(2008).
[8] Lee I M, Jung J, Park J et al. Dispersion characteristics of channel plasmon polariton waveguides with step-trench-type grooves[J]. Optics Express, 15, 16596-16603(2007).
[9] Xue W R, Guo Y N, Zhang J et al. Propagation properties of a modified slot surface plasmonic waveguide[J]. Journal of Lightwave Technology, 27, 2634-2641(2009).
[10] Arbel D, Orenstein M. Plasmonic modes in W-shaped metal-coated silicon grooves[J]. Optics Express, 16, 3114-3119(2008).
[11] Oulton R F, Sorger V J, Genov D A et al. A hybrid plasmonic waveguide for subwavelength confinement and long-range propagation[J]. Nature Photonics, 2, 496-500(2008).
[12] Sorger V J, Ye Z L, Oulton R F et al. Experimental demonstration of low-loss optical waveguiding at deep sub-wavelength scales[J]. Nature Communications, 2, 331(2011).
[13] Bian Y S, Zheng Z, Zhao X et al. Hybrid plasmonic structures based on CdS nanotubes: a novel route to low-threshold lasing on the nanoscale[J]. Journal of Physics D: Applied Physics, 45, 505105(2012).
[15] Xu J, Shi N N, Chen Y L et al. TM01 mode in a cylindrical hybrid plasmonic waveguide with large propagation length[J]. Applied Optics, 57, 4043-4047(2018).
[16] Bian Y S, Zheng Z, Zhao X et al. Modal properties of triangular metal groove/wedge based hybrid plasmonic structures for laser actions at deep-subwavelength scale[J]. Optics Communications, 297, 102-108(2013).
[18] Li Z Q, Piao R Q, Zhao J J et al. A low-threshold nanolaser based on hybrid plasmonic waveguides at the deep subwavelength scale[J]. Chinese Physics B, 24, 077303(2015).
[19] Tian J P, Sun M. Modal properties of novel hybrid plasmonic waveguide consisting of two identical dielectric nanotubes symmetrically placed on both sides of a thin metal film[J]. The European Physical Journal D, 70, 4(2016).
[22] Dai D X, Shi Y C, He S L et al. Gain enhancement in a hybrid plasmonic nano-waveguide with a low-index or high-index gain medium[J]. Optics Express, 19, 12925-12936(2011).
Get Citation
Copy Citation Text
Wang Zhibin, Yin Shaojie, Duan Xiaoning, Deng Yuping, Dong Wei, Kong Xiangrui. Hybrid Surface-Plasmon Waveguide with Symmetrical Triangular Ribs[J]. Chinese Journal of Lasers, 2020, 47(3): 313001
Category: micro and nano optics
Received: Aug. 7, 2019
Accepted: --
Published Online: Mar. 12, 2020
The Author Email: Shaojie Yin (13273366756@163.com)