Journal of Inorganic Materials, Volume. 40, Issue 6, 697(2025)

Effect of V5+ Substitution on Microstructure and Microwave Dielectric Properties of LaTaO4 Ceramics

Wenyuan LI1,2, Jianan XU1,2, Han'ao DENG1, Aimin CHANG1, and Bo ZHANG1、*
Author Affiliations
  • 11. State Key Laboratory of Functional Materials and Devices for Special Environmental Conditions, Xinjiang Key Laboratory of Electronic Information Materials and Devices, Xinjiang Technical Institute of Physics & Chemistry, Chinese Academy of Sciences, Urumqi 830011, China
  • 22. Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
  • show less
    References(26)

    [1] LI J, WANG Z, GUO Y et al. Influences of substituting of (Ni1/3Nb2/3)4+ for Ti4+on the phase compositions, microstructures, and dielectric properties of Li2Zn[Ti1-x(Ni1/3Nb2/3)x]3O8(0≤x≤0.3) microwave ceramics[J]. J. Adv. Ceram, 12, 760(2023).

    [2] FENG C, ZHOU X, TAO B et al. Crystal structure and enhanced microwave dielectric properties of the Ce2[Zr1-x(Al1/2Ta1/2)x]3(MoO4)9 ceramics at microwave frequency[J]. J. Adv. Ceram, 11, 392(2022).

    [3] WANG J, CHONG X Y, ZHOU R et al. Microstructure and thermal properties of RETaO4 (RE=Nd, Eu, Gd, Dy, Er, Yb, Lu) as promising thermal barrier coating materials[J]. Scr. Mater, 126:, 24(2017).

    [4] CHEN L, JIANG Y H, CHONG X Y et al. Synthesis and thermophysical properties of RETa3O9 (RE=Ce, Nd, Sm, Eu, Gd, Dy, Er) as promising thermal barrier coatings[J]. J. Am. Ceram. Soc, 101:, 1266(2018).

    [5] WU P, CHONG X Y, WU F S et al. Investigation of the thermophysical properties of (Y1-xYbx)TaO4 ceramics[J]. J. Eur. Ceram. Soc, 40, 3111(2020).

    [6] WANG G, ZHANG D N, HUANG X et al. Crystal structure and enhanced microwave dielectric properties of Ta5+ substituted Li3Mg2NbO6 ceramics[J]. J. Am. Ceram. Soc, 103, 214(2020).

    [7] LEE H J, HONG K S, KIM I T. Crystal structure and microwave dielectric properties of M(NbxTa1-x)2O6 solid solution (M=Mg or Zn)[J]. J. Mater. Res, 12:, 1437(2011).

    [8] ZHANG P, ZHAO Y G, LIU J et al. Enhanced microwave dielectric properties of NdNbO4 ceramic by Ta5+ substitution[J]. J. Alloys Compd, 649:, 90(2015).

    [9] HAUGSRUD R, NORBY T. Proton conduction in rare-earth ortho-niobates and ortho-tantalates[J]. Nat. Mater, 5:, 193(2006).

    [10] FORBES T Z, NYMAN M, RODRIGUEZ M A et al. The energetics of lanthanum tantalate materials[J]. J. Solid State Chem, 183:, 2516(2010).

    [11] MACHIDA M, MURAKAMI S, KIJIMA T et al. Photocatalytic property and electronic structure of lanthanide tantalates, LnTaO4 (Ln=La, Ce, Pr, Nd, and Sm)[J]. J. Phys. Chem. B, 105:, 3289(2001).

    [12] SHANNON R D. Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides[J]. Acta Crystallogr, 32:, 751(1976).

    [13] BOSMAN A J, HAVINGA E E. Temperature dependence of dielectric constants of cubic ionic compounds[J]. Phys. Rev, 129:, 1593(1963).

    [14] SHANNON R D. Dielectric polarizabilities of ions in oxides and fluorides[J]. Appl. Phys, 73:, 348(1993).

    [15] HAKKI B W, COLEMAN P D. A dielectric resonator method of measuring inductive capacities in the millimeter range[J]. IEEE Trans. Microw. Theory Tech, 8, 402(1960).

    [16] KIM D W, KWOND K, YOON S H et al. Microwave dielectric properties of rare-earth ortho-niobates with ferroelasticity[J]. J. Am. Ceram. Soc, 89, 3861(2006).

    [17] GUO D, ZHOU D, LI W B et al. Phase evolution, crystal structure, and microwave dielectric properties of water-insoluble (1-x)LaNbO4-xLaVO4 (0≤x≤0.9) ceramics[J]. Inorg. Chem, 56, 9321(2017).

    [18] BAO J, DU J L, LIU L T. A new type of microwave dielectric ceramic based on K2O-SrO-P2O5 composition with high quality factor and low sintering temperature[J]. Ceram. Int, 48:, 784(2021).

    [19] LIAO Q W, LI L X, REN X et al. New low-loss microwave dielectric material ZnTiNbTaO8[J]. J. Am. Ceram. Soc, 94:, 3237(2011).

    [20] WU F F, ZHOU D, DU C et al. Temperature stable Sm(Nb1-xVx)O4 (0.0≤x≤0.9) microwave dielectric ceramics with ultra-low dielectric loss for dielectric resonator antenna applications[J]. J. Mater. Chem. C, 9:, 9962(2021).

    [21] YANG M, ZOU H X, YANG H M et al. Phase composition and microwave dielectric properties of NaSrB5+5xO9+7.5x composite ceramics[J]. J. Eur. Ceram. Soc, 43, 1964(2023).

    [22] XIANG H C, FANG L, JIANG X W et al. A novel temperature stable microwave dielectric ceramic with garnet structure: Sr2NaMg2V3O12[J]. J. Am. Ceram. Soc, 99:, 399(2016).

    [23] WANG Y, ZUO R Z, ZHANG C et al. Low-temperature-fired ReVO4 (Re=La, Ce) microwave dielectric ceramics[J]. J. Am. Ceram. Soc, 98, 1(2015).

    [24] KIM W S, KIM T H, KIM E S et al. Microwave dielectric properties and far infrared reflectivity spectra of the (Zr0.8Sn0.2)TiO4 ceramics with additives[J]. Jpn. J. Appl. Phys, 37:, 5367(1998).

    [25] CAO Y C, ZHANG L B, MEI H R et al. Crystal structure, phonon characteristics, and dielectric properties of CaMgGe2O6: a novel diopside microwave dielectric ceramic[J]. Ceram. Int, 48, 8783(2022).

    [26] DU K, YIN C Z, YANG J Q et al. Crystal structure, far-infrared spectra, and microwave dielectric properties of bazirite-type BaZr(Si1-xGex)3O9 ceramics[J]. Ceram. Int, 48, 3592(2022).

    Tools

    Get Citation

    Copy Citation Text

    Wenyuan LI, Jianan XU, Han'ao DENG, Aimin CHANG, Bo ZHANG. Effect of V5+ Substitution on Microstructure and Microwave Dielectric Properties of LaTaO4 Ceramics [J]. Journal of Inorganic Materials, 2025, 40(6): 697

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category:

    Received: Nov. 13, 2024

    Accepted: --

    Published Online: Sep. 2, 2025

    The Author Email: Bo ZHANG (zhangbocas@ms.xjb.ac.cn)

    DOI:10.15541/jim20240482

    Topics