Laser & Optoelectronics Progress, Volume. 62, Issue 16, 1615003(2025)

Point Cloud 3D Object Detection Based on Multi-Scale Features and Grouped Convolutions

Xu Zhang, Dong Wang*, and Tao Wang
Author Affiliations
  • School of Computer Science and Information Engineering, Faculty of Intelligence Technology, Shanghai Institute of Technology, Shanghai 201418, China
  • show less
    Figures & Tables(10)
    Schematic diagram of PV-RCNN++ architecture
    Schematic diagram of the improved PV-RCNN++ architecture
    3D multi-scale feature network
    2D group convolution
    Schematic diagram of PKW-SimAM module
    Visualization of detection results. (a)(b) Detection performance of PV-RCNN++; (c)(d) detection performance of improved PV-RCNN++; (e)(f) 2D images
    • Table 1. Performance of different algorithms on the KITTI dataset

      View table

      Table 1. Performance of different algorithms on the KITTI dataset

      ModelCar(RIoU=0.70)Pedestrian(RIoU=0.50)Cyclist(RIoU=0.50)3D mAP
      EasyModerateHardEasyModerateHardEasyModerateHard
      PointPillar86.1775.2772.0548.3142.1937.6675.9757.9054.0061.06
      SECOND88.5478.7375.8650.7845.3741.0881.6364.2460.1065.15
      CenterPoint85.0977.3375.1455.1450.8145.7577.9363.5459.6665.60
      VoxelNeXt86.3877.1373.1057.1452.2447.2182.5165.7761.5167.00
      HEDNet2687.5279.3477.1058.3652.3948.0080.4262.8058.6367.17
      SAFDNet2789.2380.0177.3655.4950.4745.3481.8665.6861.4667.43
      GCIoU91.1282.0879.4654.4147.7742.4986.7069.2864.7368.67
      IA-SSD87.9879.1776.1056.5652.0747.5288.7370.8766.7669.53
      PV-RCNN91.6082.3279.9459.2352.1247.0385.1068.8064.2770.05
      Voxel-RCNN92.3282.3479.8159.8850.9445.6887.1570.9766.8370.66
      PV-RCNN++90.9881.7380.2860.0853.1248.6385.4270.0965.8570.69
      Proposed91.1782.6380.5463.2057.0752.3389.8773.6168.9373.26
    • Table 2. Ablation experiment results

      View table

      Table 2. Ablation experiment results

      MethodModulePedestrian(RIoU=0.50)Cyclist(RIoU=0.50)
      EasyModerateHard3D mAPEasyModerateHard3D mAP
      BaselineNone60.0853.1248.6353.9485.4270.0965.8573.79
      Experiment 1MSF61.4154.8150.4455.5586.1871.8167.8775.29
      Experiment 2GC61.4555.2750.7155.8189.0572.2568.1376.48
      Experiment 3PKW-SimAM61.1754.1749.6755.0087.5571.3867.3575.43
      Experiment 4MSF+GC+PKW-SimAM63.2057.0752.3357.5389.8773.6168.9377.47
    • Table 3. Detection accuracy of the model under different segmentation methods

      View table

      Table 3. Detection accuracy of the model under different segmentation methods

      MethodConvolution kernelPedestrian(3D mAP) /%Cyclist(3D mAP) /%
      1×13×35×57×79×9
      BaselineC53.9473.79
      Experiment 1C/4C/4C/4C/455.2175.42
      Experiment 2C/4C/4C/4C/455.6274.83
      Experiment 3C/2C/4C/8C/855.4274.96
      ProposedC/4C/2C/8C/855.8176.48
    • Table 4. Impact of different modules on the model's detection speed

      View table

      Table 4. Impact of different modules on the model's detection speed

      MethodInference time/ms
      Baseline115.02
      Baseline+MSF121.27
      Baseline+GC131.16
      Baseline+PKW-SimAM116.70
    Tools

    Get Citation

    Copy Citation Text

    Xu Zhang, Dong Wang, Tao Wang. Point Cloud 3D Object Detection Based on Multi-Scale Features and Grouped Convolutions[J]. Laser & Optoelectronics Progress, 2025, 62(16): 1615003

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Machine Vision

    Received: Jan. 13, 2025

    Accepted: Mar. 5, 2025

    Published Online: Aug. 4, 2025

    The Author Email: Dong Wang (dongwang@sit.edu.cn)

    DOI:10.3788/LOP250504

    CSTR:32186.14.LOP250504

    Topics