Optics and Precision Engineering, Volume. 33, Issue 6, 961(2025)

Robust principal component analysis based on soft mean filtering

Qinting WU1, Xinjing Wang1, Jinyan PAN2, Haifeng ZHANG3, Guifang SHAO1, and Yunlong GAO1,4、*
Author Affiliations
  • 1College of Mechanical Engineering, South China Univ. of Tech., Guangzhou5064, China
  • 2College of Information Engineering, Jimei University, FujianXiamen, 36101
  • 3School of Mechanical and Automotive Engineering, Shanghai University of Engineering Science, Shanghai, 201620
  • 4National Institute for Data Science in Health and Medicine, Xiamen University, FujianXiamen, 361102
  • show less
    References(38)

    [1] LI M, MA H, LV S Y et al. Enhanced NSGA-II-based feature selection method for high-dimensional classification[J]. Information Sciences, 663, 120269(2024).

    [2] HU H Z, LIU J X, ZHANG X P et al. An effective and adaptable K-means algorithm for big data cluster analysis[J]. Pattern Recognition, 139, 109404(2023).

    [3] HIMEUR Y, ELNOUR M, FADLI F et al. AI-big data analytics for building automation and management systems: a survey, actual challenges and future perspectives[J]. Artificial Intelligence Review, 56, 4929-5021(2023).

    [4] MORADNIA S, GOLALIZADEH M. Supervised Clustering of Persian Handwritten Images Using Regularization and Dimension Reduction Methods[J]. Acm Transactions on Knowledge Discovery from Data, 18(2024).

    [5] ZHANG Y, GONG X L, YU H L et al. Distance-based feature repack algorithm for video coding for machines[J]. Journal of Visual Communication and Image Representation, 102, 104150(2024).

    [6] CHAKRABARTI A, NI Y, MALLICK B K. Joint Bayesian estimation of cell dependence and gene associations in spatially resolved transcriptomic data[J]. Scientific Reports, 14, 9516(2024).

    [7] GAO T, GU L J, CHEN H. Tensor ring discriminant analysis used for dimension reduction of remote sensing feature tensor[J]. IEEE Transactions on Geoscience and Remote Sensing, 62, 4205717(2024).

    [8] ANURAGI A, SISODIA D S, PACHORI R B. Mitigating the curse of dimensionality using feature projection techniques on electroencephalography datasets: an empirical review[J]. Artificial Intelligence Review, 57, 75(2024).

    [10] GAO Y L, WANG X J, XIE J X et al. Robust principal component analysis based on fuzzy local information reservation[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 46, 9321-9337(2024).

    [11] 李元祥, 彭希帅, 郑思龙. 基于字典学习的非线性降维方法[J]. 自动化学报, 42, 1065-1076(2016).

         ZHENG S L, LI U X, WEI X et al. Nonlinear dimensionality reduction based on dictionary learning[J]. Acta Automatica Sinica, 42, 1065-1076(2016).

    [12] LU J W, PLATANIOTIS K N, VENETSANOPOULOS A N. Face recognition using LDA-based algorithms[J]. IEEE Transactions on Neural Networks, 14, 195-200(2003).

    [13] LIU J J, FENG M L, XIU X C et al. Towards robust and sparse linear discriminant analysis for image classification[J]. Pattern Recognition, 153, 110512(2024).

    [14] CHEN B H, GAO Y L, ZHANG Y S et al. Robust PCA using adaptive probability weighting[J]. Acta Automatica Sinica, 825-38(2021).

    [15] GAO Y L, FENG Y Z, XIE Y W et al. Normalized robust PCA with adaptive reconstruction error minimization[J]. IEEE Transactions on Knowledge and Data Engineering, 36, 2587-2599(2024).

    [16] MIGENDA N, MÖLLER R, SCHENCK W. Adaptive local principal component analysis improves the clustering of high-dimensional data[J]. Pattern Recognition, 146, 110030(2024).

    [17] AHMADI M, SHARIFI A, JAFARIAN FARD M et al. Detection of brain lesion location in MRI images using convolutional neural network and robust PCA[J]. The International Journal of Neuroscience, 133, 55-66(2023).

    [18] CANDÈS E J, LI X D, MA Y et al. Robust principal component analysis?[J]. Journal of the ACM, 58, 1-37(2011).

    [19] VASWANI N, BOUWMANS T, JAVED S et al. Robust subspace learning: robust PCA, robust subspace tracking, and robust subspace recovery[J]. IEEE Signal Processing Magazine, 35, 32-55(2018).

    [20] XIAO F M, XIN L H, CHAO H M et al. Research on Machine Learning for Scientific Discovery[J]. Chinese Journal of Computers, 46(2023).

    [21] KE Q F, KANADE T. Robust L1norm Factorization in The Presence of Outliers and Missing Data by Alternative Convex Programming[C], 739-746(05).

    [22] Ding C, Zhou D, He X et al. R1-PCA: Rotational Invariant L1-Norm principal component analysis for robust subspace factorization[C], 281-288(2006).

    [23] HUANG H, DING C[M]. Robust Tensor Factorization Using R1-Norm(2008).

    [24] Nie F, Huang H, Ding C et al. Robust principal component analysis with non-greedy L1-Norm maximization[C], 22, 1433(2011).

    [25] KWAK N. Principal component analysis by lp-norm maximization[J]. IEEE Transactions on Cybernetics, 44, 594-609(2014).

    [26] SAHANI M, DASH P K. Automatic power quality events recognition using modes decomposition based online P-norm adaptive extreme learning machine[J]. IEEE Transactions on Industrial Informatics, 16, 4355-4364(2020).

    [27] WANG Q Q, GAO Q X, GAO X B et al. $\ell 2, p$-norm based PCA for image recognition[J]. IEEE Transactions on Image Processing, 27, 1336-1346(2018).

    [28] NIE F P, WU D Y, WANG R et al. Truncated robust principle component analysis with A general optimization framework[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 44, 1081-1097(2022).

    [29] Wang Q, Gao Q, Gao X et al. Angle Principal Component Analysis[C], 2017, 2936-2942.

    [30] GAO Y L, LUO S Z, PAN J Y et al. Robust PCA Using Adaptive Probability Weighting[J]. Acta Automatica Sinica, 47, 825-838(2021).

         高云龙, 罗斯哲, 潘金艳. 鲁棒自适应概率加权主成分分析[J]. 自动化学报, 47, 825-838(2021).

    [31] GAO Y L, LIN T T, ZHANG Y S et al. Robust principal component analysis based on discriminant information[J]. IEEE Transactions on Knowledge and Data Engineering, 35, 1991-2003(2023).

    [32] KWAK N. Principal component analysis based on l1-norm maximization[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 30, 1672-1680(2008).

    [33] NIE F P, TIAN L, HUANG H et al. Non-greedy L21-norm maximization for principal component analysis[J]. IEEE Transactions on Image Processing, 30, 5277-5286(2021).

    [34] HE R, HU B G, ZHENG W S et al. Robust principal component analysis based on maximum correntropy criterion[J]. IEEE Transactions on Image Processing, 20, 1485-1494(2011).

    [35] NIE F, YUAN J, HUANG H. Optimal mean robust principal component analysis[C], 1062-1070(2014).

    [36] WU D Y, ZHANG H, NIE F P et al. Double-attentive principle component analysis[J]. IEEE Signal Processing Letters, 27, 1814-1818(2020).

    Tools

    Get Citation

    Copy Citation Text

    Qinting WU, Xinjing Wang, Jinyan PAN, Haifeng ZHANG, Guifang SHAO, Yunlong GAO. Robust principal component analysis based on soft mean filtering[J]. Optics and Precision Engineering, 2025, 33(6): 961

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category:

    Received: Oct. 23, 2024

    Accepted: --

    Published Online: Jun. 16, 2025

    The Author Email:

    DOI:10.37188/OPE.20253306.0961

    Topics