Optics and Precision Engineering, Volume. 33, Issue 6, 961(2025)
Robust principal component analysis based on soft mean filtering
[1] LI M, MA H, LV S Y et al. Enhanced NSGA-II-based feature selection method for high-dimensional classification[J]. Information Sciences, 663, 120269(2024).
[2] HU H Z, LIU J X, ZHANG X P et al. An effective and adaptable K-means algorithm for big data cluster analysis[J]. Pattern Recognition, 139, 109404(2023).
[3] HIMEUR Y, ELNOUR M, FADLI F et al. AI-big data analytics for building automation and management systems: a survey, actual challenges and future perspectives[J]. Artificial Intelligence Review, 56, 4929-5021(2023).
[4] MORADNIA S, GOLALIZADEH M. Supervised Clustering of Persian Handwritten Images Using Regularization and Dimension Reduction Methods[J]. Acm Transactions on Knowledge Discovery from Data, 18(2024).
[5] ZHANG Y, GONG X L, YU H L et al. Distance-based feature repack algorithm for video coding for machines[J]. Journal of Visual Communication and Image Representation, 102, 104150(2024).
[6] CHAKRABARTI A, NI Y, MALLICK B K. Joint Bayesian estimation of cell dependence and gene associations in spatially resolved transcriptomic data[J]. Scientific Reports, 14, 9516(2024).
[7] GAO T, GU L J, CHEN H. Tensor ring discriminant analysis used for dimension reduction of remote sensing feature tensor[J]. IEEE Transactions on Geoscience and Remote Sensing, 62, 4205717(2024).
[8] ANURAGI A, SISODIA D S, PACHORI R B. Mitigating the curse of dimensionality using feature projection techniques on electroencephalography datasets: an empirical review[J]. Artificial Intelligence Review, 57, 75(2024).
[10] GAO Y L, WANG X J, XIE J X et al. Robust principal component analysis based on fuzzy local information reservation[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 46, 9321-9337(2024).
[11] 李元祥, 彭希帅, 郑思龙. 基于字典学习的非线性降维方法[J]. 自动化学报, 42, 1065-1076(2016).
ZHENG S L, LI U X, WEI X et al. Nonlinear dimensionality reduction based on dictionary learning[J]. Acta Automatica Sinica, 42, 1065-1076(2016).
[12] LU J W, PLATANIOTIS K N, VENETSANOPOULOS A N. Face recognition using LDA-based algorithms[J]. IEEE Transactions on Neural Networks, 14, 195-200(2003).
[13] LIU J J, FENG M L, XIU X C et al. Towards robust and sparse linear discriminant analysis for image classification[J]. Pattern Recognition, 153, 110512(2024).
[14] CHEN B H, GAO Y L, ZHANG Y S et al. Robust PCA using adaptive probability weighting[J]. Acta Automatica Sinica, 825-38(2021).
[15] GAO Y L, FENG Y Z, XIE Y W et al. Normalized robust PCA with adaptive reconstruction error minimization[J]. IEEE Transactions on Knowledge and Data Engineering, 36, 2587-2599(2024).
[16] MIGENDA N, MÖLLER R, SCHENCK W. Adaptive local principal component analysis improves the clustering of high-dimensional data[J]. Pattern Recognition, 146, 110030(2024).
[17] AHMADI M, SHARIFI A, JAFARIAN FARD M et al. Detection of brain lesion location in MRI images using convolutional neural network and robust PCA[J]. The International Journal of Neuroscience, 133, 55-66(2023).
[18] CANDÈS E J, LI X D, MA Y et al. Robust principal component analysis?[J]. Journal of the ACM, 58, 1-37(2011).
[19] VASWANI N, BOUWMANS T, JAVED S et al. Robust subspace learning: robust PCA, robust subspace tracking, and robust subspace recovery[J]. IEEE Signal Processing Magazine, 35, 32-55(2018).
[20] XIAO F M, XIN L H, CHAO H M et al. Research on Machine Learning for Scientific Discovery[J]. Chinese Journal of Computers, 46(2023).
[21] KE Q F, KANADE T. Robust L1norm Factorization in The Presence of Outliers and Missing Data by Alternative Convex Programming[C], 739-746(05).
[22] Ding C, Zhou D, He X et al. R1-PCA: Rotational Invariant L1-Norm principal component analysis for robust subspace factorization[C], 281-288(2006).
[23] HUANG H, DING C[M]. Robust Tensor Factorization Using R1-Norm(2008).
[24] Nie F, Huang H, Ding C et al. Robust principal component analysis with non-greedy L1-Norm maximization[C], 22, 1433(2011).
[25] KWAK N. Principal component analysis by lp-norm maximization[J]. IEEE Transactions on Cybernetics, 44, 594-609(2014).
[26] SAHANI M, DASH P K. Automatic power quality events recognition using modes decomposition based online P-norm adaptive extreme learning machine[J]. IEEE Transactions on Industrial Informatics, 16, 4355-4364(2020).
[27] WANG Q Q, GAO Q X, GAO X B et al. $\ell 2, p$-norm based PCA for image recognition[J]. IEEE Transactions on Image Processing, 27, 1336-1346(2018).
[28] NIE F P, WU D Y, WANG R et al. Truncated robust principle component analysis with A general optimization framework[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 44, 1081-1097(2022).
[29] Wang Q, Gao Q, Gao X et al. Angle Principal Component Analysis[C], 2017, 2936-2942.
[30] GAO Y L, LUO S Z, PAN J Y et al. Robust PCA Using Adaptive Probability Weighting[J]. Acta Automatica Sinica, 47, 825-838(2021).
高云龙, 罗斯哲, 潘金艳. 鲁棒自适应概率加权主成分分析[J]. 自动化学报, 47, 825-838(2021).
[31] GAO Y L, LIN T T, ZHANG Y S et al. Robust principal component analysis based on discriminant information[J]. IEEE Transactions on Knowledge and Data Engineering, 35, 1991-2003(2023).
[32] KWAK N. Principal component analysis based on l1-norm maximization[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 30, 1672-1680(2008).
[33] NIE F P, TIAN L, HUANG H et al. Non-greedy L21-norm maximization for principal component analysis[J]. IEEE Transactions on Image Processing, 30, 5277-5286(2021).
[34] HE R, HU B G, ZHENG W S et al. Robust principal component analysis based on maximum correntropy criterion[J]. IEEE Transactions on Image Processing, 20, 1485-1494(2011).
[35] NIE F, YUAN J, HUANG H. Optimal mean robust principal component analysis[C], 1062-1070(2014).
[36] WU D Y, ZHANG H, NIE F P et al. Double-attentive principle component analysis[J]. IEEE Signal Processing Letters, 27, 1814-1818(2020).
Get Citation
Copy Citation Text
Qinting WU, Xinjing Wang, Jinyan PAN, Haifeng ZHANG, Guifang SHAO, Yunlong GAO. Robust principal component analysis based on soft mean filtering[J]. Optics and Precision Engineering, 2025, 33(6): 961
Category:
Received: Oct. 23, 2024
Accepted: --
Published Online: Jun. 16, 2025
The Author Email: