Optics and Precision Engineering, Volume. 33, Issue 6, 961(2025)

Robust principal component analysis based on soft mean filtering

Qinting WU1, Xinjing Wang1, Jinyan PAN2, Haifeng ZHANG3, Guifang SHAO1, and Yunlong GAO1,4、*
Author Affiliations
  • 1College of Mechanical Engineering, South China Univ. of Tech., Guangzhou5064, China
  • 2College of Information Engineering, Jimei University, FujianXiamen, 36101
  • 3School of Mechanical and Automotive Engineering, Shanghai University of Engineering Science, Shanghai, 201620
  • 4National Institute for Data Science in Health and Medicine, Xiamen University, FujianXiamen, 361102
  • show less
    Figures & Tables(15)
    Main concept of noise identification in the first step of RPCA-SMF
    Second step noise processing related ideas of RPCA-SMF
    Robustness experiment of artificial dataset
    Partial face images, from left to right are some normal images and their noisy images from FEI, FERET, Yale B, ORL, PIE, and COIL20 datasets respectively
    Accuracy comparison of different algorithms on six benchmark datasets with 25% noise added to each dataset
    Reconstruction error comparison of different algorithms on six benchmark datasets with 25% noise added to each dataset
    Comparison of reconstructed images from different algorithms on FERET, PIE, and AR Datasets
    Anomaly detection results of RPCA-SMF (From top to bottom: 1/4 black and white noise, 1/2 noise block, pure noise block)
    Different algorithms for image compression and restoration effects
    Visualization weights of AR dataset
    Ablation experiment results
    Parameter sensitivity analysis of RPCA-SMF on datasets
    Convergence curves on four datasets of RPCA-SMF
    • Table 1. Relevant information of high-dimensional experimental datasets

      View table
      View in Article

      Table 1. Relevant information of high-dimensional experimental datasets

      数据集维度类别数个数
      FEI10 800 (120×90)50700
      PIE2 000 (50×40)681 632
      FERET6 400 (80×80)2001 400
      Yale B1 024(32×32)382 470
      ORL10 304(112×92)40400
      COIL204 096(64×64)20640
    • Table 1. [in Chinese]

      View table
      View in Article

      Table 1. [in Chinese]

      算法1. RPCA-SMF

      输入:X=[x1,x2,,xn]Rd×n,降维后的维度m,近邻样本数kp

      输出:正交投影矩阵WRd×m,模糊权值。

      1. 初始化:WRd×mμRd×1,单位矩阵D1,D2Rn×n

      2. 根据样本间的欧氏距离为每个样本挑选最近的k个近邻,并计算每个样本的近邻均值x¯i=1kxjNixj

      3. WHILE not converge DO

        更新AB,满足A=diag(φi)*D1B=diag(θi)*D2

        通过式(32)优化μ

        通过求解maxWTW=IWTHW更新投影矩阵W

        更新对角矩阵D1D2,其中D1D2的第i个元素分别为d1id2i

      4. END WHILE

    Tools

    Get Citation

    Copy Citation Text

    Qinting WU, Xinjing Wang, Jinyan PAN, Haifeng ZHANG, Guifang SHAO, Yunlong GAO. Robust principal component analysis based on soft mean filtering[J]. Optics and Precision Engineering, 2025, 33(6): 961

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category:

    Received: Oct. 23, 2024

    Accepted: --

    Published Online: Jun. 16, 2025

    The Author Email:

    DOI:10.37188/OPE.20253306.0961

    Topics