Journal of Synthetic Crystals, Volume. 54, Issue 6, 912(2025)

Research Progress on Thermal Annealing Technologies of CZT Crystals

Xiao WU, Wen ZHAO, Wenbin QI, Linwei SONG, Xiangkun LI, Jun JIANG, Jincheng KONG, and Shanli WANG*
References(71)

[1] OWENS A. Semiconductor materials and radiation detection. Journal of Synchrotron Radiation, 13, 143-150(2006).

[2] INIEWSKI K. CZT detector technology for medical imaging. Journal of Instrumentation, 9, 11001(2014).

[3] ALAM M D, NASIM S S, HASAN S. Recent progress in CdZnTe based room temperature detectors for nuclear radiation monitoring. Progress in Nuclear Energy, 140, 103918(2021).

[4] TSYBRII Z, BEZSMOLNYY Y, SVEZHENTSOVA K et al. HgCdTe/CdZnTe LPE epitaxial layers: from material growth to applications in devices. Journal of Crystal Growth, 529, 125295(2020).

[5] HUANG Z, WU S Y, CHEN B S et al. Research progress on CdZnTe crystals growth and defects for radiation detection applications. The Chinese Journal of Nonferrous Metals, 32, 2327-2344(2022).

[6] ROY U N, EGARIEVWE S U et al. Point defects: their influence on electron trapping, resistivity, and electron mobility-lifetime product in CdTexSe1-x detectors. Journal of Applied Physics, 119(2016).

[7] WEI S H, ZHANG S B. Chemical trends of defect formation and doping limit in II-VI semiconductors: the case of CdTe. Physical Review B, 66, 155211(2002).

[8] YANG F, WANG T, ZHOU B R et al. Research progress on CdZnTe crystal growth for room temperature radiation detection applications. Journal of Synthetic Crystals, 49, 561-569(2020).

[9] YANG J, KONG J C, QIN G et al. Impact of precipitates in CdZnTe substrates on defects of HgCdTe film grown by molecular beam epitaxy. SPIE, 122840-10(2022).

[10] SHENG F F, ZHOU C H, SUN S W et al. Influences of Te-rich and Cd-rich precipitates of CdZnTe substrates on the surface defects of HgCdTe liquid-phase epitaxy materials. Journal of Electronic Materials, 43, 1397-1402(2014).

[11] PARODOS T, FITZGERALD E A, CASTER A et al. Effect of dislocations on VLWIR HgCdTe photodiodes. Journal of Electronic Materials, 36, 1068-1076(2007).

[12] LAMARRE P, FULK C, D’ORSOGNA D et al. Characterization of dislocations in HgCdTe heteroepitaxial layers using a new substrate removal technique. Journal of Electronic Materials, 38, 1746-1754(2009).

[13] HE Y H. Study on defects and annealing treatment of CdZnTe crystals(2014).

[14] CHEN Y R, ZHAO P, YU P F et al. Research progress on annealing of CdZnTe crystals used for room temperature radiation detectors. Journal of Materials Science and Engineering, 39, 342-354(2021).

[15] LI Y J. Defect study and annealing modification of Cd1-xZnxTe(2001).

[16] YE Z H, CHEN Y Y, ZHANG P. Overview of latest technologies of HgCdTe infrared photoelectric detectors. Infrared, 35, 1-8(2014).

[17] BUGÁR M. Dynamics of structural defects in CdTe-based semiconductors, 3-24(2011).

[18] BOLOTNIKOV A, KIM H K et al. Point defects in CdZnTe crystals grown by different techniques. Journal of Electronic Materials, 40, 274-279(2011).

[19] BISWAS K, DU M H. What causes high resistivity in CdTe. New Journal of Physics, 14(2012).

[20] DU M H, TAKENAKA H, SINGH D J. Carrier compensation in semi-insulating CdTe: first-principles calculations. Physical Review B, 77(2008).

[21] SZELES C. Advances in the crystal growth and device fabrication technology of CdZnTe room temperature radiation detectors. IEEE Transactions on Nuclear Science, 51, 1242-1249(2004).

[22] FRANC J, GRILL R, HLÍDEK P et al. The influence of growth conditions on the quality of CdZnTe single crystals. Semiconductor Science and Technology, 16, 514-520(2001).

[23] LI W W, SUN K. Study on the annealing of Cd1-xZnxTe in in vapor. Acta Physica Sinica, 55, 1921-1929(2006).

[24] KAMIENIECKI E. Effect of charge trapping on effective carrier lifetime in compound semiconductors: high resistivity CdZnTe. Journal of Applied Physics, 116, 193702(2014).

[25] GUO R R, JIE W Q, WANG N et al. Influence of deep level defects on carrier lifetime in CdZnTe∶In. Journal of Applied Physics, 117(2015).

[26] FIEDERLE M, BABENTSOV V, FRANC J et al. Growth of high resistivity CdTe and (Cd, Zn)Te crystals. Crystal Research and Technology, 38, 588-597(2003).

[27] NAN R H, WANG T, XU G et al. Compensation processes in high-resistivity CdZnTe crystals doped with In/Al. Journal of Crystal Growth, 451, 150-154(2016).

[28] CHAUDHURI S K, MANDAL K C. Room-temperature radiation detectors based on large-volume CdZnTe single crystals. Advanced Materials for Radiation Detection, 211-234(2022).

[29] YUAN S Z, ZHAO W, KONG J C et al. Effect of in situ post-annealing on the second phase inclusion defects in CdZnTe crystals. Infrared Technology, 43, 615(2021).

[30] AMMAN M, LEE J S, LUKE P N. Electron trapping nonuniformity in high-pressure-Bridgman-grown CdZnTe. Journal of Applied Physics, 92, 3198-3206(2002).

[31] CARINI G A, BOLOTNIKOV A E, CAMARDA G S et al. Effect of Te precipitates on the performance of CdZnTe detectors. Applied Physics Letters, 88, 143515(2006).

[32] CARINI G A, BOLOTNIKOV A E, CAMARDA G S et al. High-resolution X-ray mapping of CdZnTe detectors. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 579, 120-124(2007).

[33] ZHANG Y, WU J, MU S et al. Surface defects of liquid phase epitaxial growth of HgCdTe film induced by Te-rich precipitates in CdZnTe substrates. Journal of Infrared and Millimeter Waves, 37, 728(2018).

[34] CARINI G A, ARNONE C, BOLOTNIKOV A E et al. Material quality characterization of CdZnTe substrates for HgCdTe epitaxy. Journal of Electronic Materials, 35, 1495-1502(2006).

[35] QIN G, KONG J C, YANG J et al. HgCdTe films grown by MBE on CZT(211)B substrates. Journal of Electronic Materials, 52, 2441-2448(2023).

[36] BRUNETT B A, VAN SCYOC J M, HILTON N R et al. The performance effects of crystal boundaries in cadmium zinc telluride radiation spectrometers. IEEE Transactions on Nuclear Science, 47, 1353-1359(2000).

[37] JAMES R B, BRUNETT B, HEFFELFINGER J et al. Material properties of large-volume cadmium zinc telluride crystals and their relationship to nuclear detector performance. Journal of Electronic Materials, 27, 788-799(1998).

[38] SCHIEBER M, SCHLESINGER T E, JAMES R B et al. Study of impurity segregation, crystallinity, and detector performance of melt-grown cadmium zinc telluride crystals. Journal of Crystal Growth, 237, 2082-2090(2002).

[39] FAN Y X, XU Q Q, WU Q. Microdefects in cadmium zinc telluride crystals. Infrared Technology, 39, 694(2017).

[40] XU L Y, LIU Z, LIANG L. Effect of high-dose ion irradiation on the optoelectronic properties of CdZnTe∶In crystals. Rare Metal Materials and Engineering, 50, 1941-1945(2021).

[41] TYAGI M, GADKARI S C. Growth ofsingle crystals for nuclear radiation detection, 55-80(2022).

[42] WU Q, LIU J G, XU Q Q et al. Research on directional welding technology of CdZnTe seed crystals. Laser & Infrared, 50, 333-336(2020).

[43] ROY U N, BAKER J N, CAMARDA G S et al. Evaluation of crystalline quality of traveling heater method (THM) grown Cd0.9Zn0.1Te0.98Se0.02 crystals. Applied Physics Letters, 120, 242103(2022).

[44] BELAS E, BUGÁR M, GRILL R et al. Elimination of inclusions in (CdZn)Te substrates by post-grown annealing. Journal of Electronic Materials, 36, 1025-1030(2007).

[45] YU P F, JIE W Q, WANG T. Effect of Te atmosphere annealing on the properties of CdZnTe single crystals. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 643, 53-56(2011).

[46] XU C, SHENG F F, YANG J R. Annealing of CdZnTe materials to reduce inclusion defects. Journal of Crystal Growth, 451, 126-131(2016).

[47] SHENG F F, YANG J R, SUN S W et al. Influence of Cd-rich annealing on defects in Te-rich CdZnTe materials. Journal of Electronic Materials, 43, 2702-2708(2014).

[48] LI G Q, ZHANG X L, JIE W Q et al. Thermal treatment of detector-grade CdZnTe. Journal of Crystal Growth, 295, 31-35(2006).

[49] LI G Q, ZHANG X L, HUA H et al. Upgrading of CdZnTe by annealing with pure Cd and Zn metals. Semiconductor Science Technology, 21, 392-396(2006).

[50] HUANG Z, WU S Y, CHEN B S et al. Tailoring the defects and resistivity in CdZnTe single crystal via one-step annealing with CdTe compound. Vacuum, 217, 112519(2023).

[51] XU L Y, WANG J Y, DONG J P et al. Improvement of surface defects in CdZnTe crystals by rapid thermal annealing. Journal of Electronic Materials, 49, 4563-4568(2020).

[52] MA J, KUCIAUSKAS D, ALBIN D et al. Dependence of the minority-carrier lifetime on the stoichiometry of CdTe using time-resolved photoluminescence and first-principles calculations. Physical Review Letters, 111(2013).

[53] YANG G, BOLOTNIKOV A E, FOCHUK P M et al. Study on thermal annealing of cadmium zinc telluride (CZT) crystals, 780507(2010).

[54] HE Y H, JIE W Q, WANG T et al. Migration of Te inclusions in CdZnTe single crystals under the temperature gradient annealing. Journal of Crystal Growth, 402, 15-21(2014).

[55] KIM K H, CARCELÉN V et al. Defect levels and thermomigration of Te precipitates in CdZnTe∶Pb. Journal of Crystal Growth, 312, 781-784(2010).

[56] KIM K H, BOLOTNIKOV A E et al. Temperature-gradient annealing of CdZnTe under Te overpressure. Journal of Crystal Growth, 354, 62-66(2012).

[57] DUFF M C, LYNN K G, JONES K et al. Characterization of secondary phases in modified vertical Bridgman growth CZT, 74490(2009).

[58] SHEN J, AIDUN D K, REGEL L et al. Characterization of precipitates in CdTe and Cd1-xZnxTe grown by vertical Bridgman-Stockbarger technique. Journal of Crystal Growth, 132, 250-260(1993).

[59] HE Y H, JIE W Q, XU Y D et al. Matrix-controlled morphology evolution of Te inclusions in CdZnTe single crystal. Scripta Materialia, 67, 5-8(2012).

[60] EGARIEVWE S U, YANG G, EGARIEVWE A A et al. Post-growth annealing of Bridgman-grown CdZnTe and CdMnTe crystals for room-temperature nuclear radiation detectors. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 784, 51-55(2015).

[61] YANG G, BOLOTNIKOV A E, FOCHUK P M et al. Post-growth thermal annealing study of CdZnTe for developing room-temperature X-ray and gamma-ray detectors. Journal of Crystal Growth, 379, 16-20(2013).

[62] PIACENTINI G, ZAMBELLI N, BENASSI G et al. Two-step thermal process in tellurium vapor for tellurium inclusion annealing in high resistivity CdZnTe crystals. Journal of Crystal Growth, 415, 15-19(2015).

[63] KIM K, HWANG S, YU H et al. Two-step annealing to remove Te secondary-phase defects in CdZnTe while preserving the high electrical resistivity. IEEE Transactions on Nuclear Science, 65, 2333-2337(2018).

[64] KIM E, KIM Y, BOLOTNIKOV A E et al. Detector performance and defect densities in CdZnTe after two-step annealing. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 923, 51-54(2019).

[65] RUSTOM D. Low temperature thermal annealing of detector grade CdZnTe (CZT), 41-50(2010).

[66] KIM K H, HWANG S, FOCHUK P et al. The effect of low-temperature annealing on a CdZnTe detector. IEEE Transactions on Nuclear Science, 63, 2278-2282(2016).

[67] LIU Y, ZHU S F, ZHAO B J et al. Annealing after surface passivation of CdZnTe wafers. Journal of Synthetic Crystals, 40, 1107-1110(2011).

[68] HWANG S, YU H et al. High-temperature annealing of CdZnTe detectors. IEEE Transactions on Nuclear Science, 64, 2966-2969(2017).

[69] SWAIN S K, JONES K A, DATTA A et al. Study of different cool down schemes during the crystal growth of detector grade CdZnTe. IEEE Transactions on Nuclear Science, 58, 2341-2345(2011).

[70] ZHANG T, MIN J H, LIANG X Y et al. Effect of in situ annealing on properties of CdZnTe crystals. Journal of Shanghai University (Natural Science Edition), 20, 701-706(2014).

[71] HUANG Z, WU S Y, CHEN B S et al. Enhanced performance CdZnTe single crystal with few surface damages via solution based annealing. Sensors and Actuators A: Physical, 369, 115168(2024).

Tools

Get Citation

Copy Citation Text

Xiao WU, Wen ZHAO, Wenbin QI, Linwei SONG, Xiangkun LI, Jun JIANG, Jincheng KONG, Shanli WANG. Research Progress on Thermal Annealing Technologies of CZT Crystals[J]. Journal of Synthetic Crystals, 2025, 54(6): 912

Download Citation

EndNote(RIS)BibTexPlain Text
Save article for my favorites
Paper Information

Category:

Received: Feb. 11, 2025

Accepted: --

Published Online: Jul. 8, 2025

The Author Email: Shanli WANG (wshanli@hotmail.com)

DOI:10.16553/j.cnki.issn1000-985x.2025.0024

Topics