Journal of Synthetic Crystals, Volume. 54, Issue 6, 912(2025)
Research Progress on Thermal Annealing Technologies of CZT Crystals
[1] OWENS A. Semiconductor materials and radiation detection. Journal of Synchrotron Radiation, 13, 143-150(2006).
[2] INIEWSKI K. CZT detector technology for medical imaging. Journal of Instrumentation, 9, 11001(2014).
[3] ALAM M D, NASIM S S, HASAN S. Recent progress in CdZnTe based room temperature detectors for nuclear radiation monitoring. Progress in Nuclear Energy, 140, 103918(2021).
[4] TSYBRII Z, BEZSMOLNYY Y, SVEZHENTSOVA K et al. HgCdTe/CdZnTe LPE epitaxial layers: from material growth to applications in devices. Journal of Crystal Growth, 529, 125295(2020).
[5] HUANG Z, WU S Y, CHEN B S et al. Research progress on CdZnTe crystals growth and defects for radiation detection applications. The Chinese Journal of Nonferrous Metals, 32, 2327-2344(2022).
[6] ROY U N, EGARIEVWE S U et al. Point defects: their influence on electron trapping, resistivity, and electron mobility-lifetime product in CdTexSe1-x detectors. Journal of Applied Physics, 119(2016).
[7] WEI S H, ZHANG S B. Chemical trends of defect formation and doping limit in II-VI semiconductors: the case of CdTe. Physical Review B, 66, 155211(2002).
[8] YANG F, WANG T, ZHOU B R et al. Research progress on CdZnTe crystal growth for room temperature radiation detection applications. Journal of Synthetic Crystals, 49, 561-569(2020).
[9] YANG J, KONG J C, QIN G et al. Impact of precipitates in CdZnTe substrates on defects of HgCdTe film grown by molecular beam epitaxy. SPIE, 122840-10(2022).
[10] SHENG F F, ZHOU C H, SUN S W et al. Influences of Te-rich and Cd-rich precipitates of CdZnTe substrates on the surface defects of HgCdTe liquid-phase epitaxy materials. Journal of Electronic Materials, 43, 1397-1402(2014).
[11] PARODOS T, FITZGERALD E A, CASTER A et al. Effect of dislocations on VLWIR HgCdTe photodiodes. Journal of Electronic Materials, 36, 1068-1076(2007).
[12] LAMARRE P, FULK C, D’ORSOGNA D et al. Characterization of dislocations in HgCdTe heteroepitaxial layers using a new substrate removal technique. Journal of Electronic Materials, 38, 1746-1754(2009).
[13] HE Y H. Study on defects and annealing treatment of CdZnTe crystals(2014).
[14] CHEN Y R, ZHAO P, YU P F et al. Research progress on annealing of CdZnTe crystals used for room temperature radiation detectors. Journal of Materials Science and Engineering, 39, 342-354(2021).
[15] LI Y J. Defect study and annealing modification of Cd1-xZnxTe(2001).
[16] YE Z H, CHEN Y Y, ZHANG P. Overview of latest technologies of HgCdTe infrared photoelectric detectors. Infrared, 35, 1-8(2014).
[17] BUGÁR M. Dynamics of structural defects in CdTe-based semiconductors, 3-24(2011).
[18] BOLOTNIKOV A, KIM H K et al. Point defects in CdZnTe crystals grown by different techniques. Journal of Electronic Materials, 40, 274-279(2011).
[19] BISWAS K, DU M H. What causes high resistivity in CdTe. New Journal of Physics, 14(2012).
[20] DU M H, TAKENAKA H, SINGH D J. Carrier compensation in semi-insulating CdTe: first-principles calculations. Physical Review B, 77(2008).
[21] SZELES C. Advances in the crystal growth and device fabrication technology of CdZnTe room temperature radiation detectors. IEEE Transactions on Nuclear Science, 51, 1242-1249(2004).
[22] FRANC J, GRILL R, HLÍDEK P et al. The influence of growth conditions on the quality of CdZnTe single crystals. Semiconductor Science and Technology, 16, 514-520(2001).
[23] LI W W, SUN K. Study on the annealing of Cd1-xZnxTe in in vapor. Acta Physica Sinica, 55, 1921-1929(2006).
[24] KAMIENIECKI E. Effect of charge trapping on effective carrier lifetime in compound semiconductors: high resistivity CdZnTe. Journal of Applied Physics, 116, 193702(2014).
[25] GUO R R, JIE W Q, WANG N et al. Influence of deep level defects on carrier lifetime in CdZnTe∶In. Journal of Applied Physics, 117(2015).
[26] FIEDERLE M, BABENTSOV V, FRANC J et al. Growth of high resistivity CdTe and (Cd, Zn)Te crystals. Crystal Research and Technology, 38, 588-597(2003).
[27] NAN R H, WANG T, XU G et al. Compensation processes in high-resistivity CdZnTe crystals doped with In/Al. Journal of Crystal Growth, 451, 150-154(2016).
[28] CHAUDHURI S K, MANDAL K C. Room-temperature radiation detectors based on large-volume CdZnTe single crystals. Advanced Materials for Radiation Detection, 211-234(2022).
[29] YUAN S Z, ZHAO W, KONG J C et al. Effect of in situ post-annealing on the second phase inclusion defects in CdZnTe crystals. Infrared Technology, 43, 615(2021).
[30] AMMAN M, LEE J S, LUKE P N. Electron trapping nonuniformity in high-pressure-Bridgman-grown CdZnTe. Journal of Applied Physics, 92, 3198-3206(2002).
[31] CARINI G A, BOLOTNIKOV A E, CAMARDA G S et al. Effect of Te precipitates on the performance of CdZnTe detectors. Applied Physics Letters, 88, 143515(2006).
[32] CARINI G A, BOLOTNIKOV A E, CAMARDA G S et al. High-resolution X-ray mapping of CdZnTe detectors. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 579, 120-124(2007).
[33] ZHANG Y, WU J, MU S et al. Surface defects of liquid phase epitaxial growth of HgCdTe film induced by Te-rich precipitates in CdZnTe substrates. Journal of Infrared and Millimeter Waves, 37, 728(2018).
[34] CARINI G A, ARNONE C, BOLOTNIKOV A E et al. Material quality characterization of CdZnTe substrates for HgCdTe epitaxy. Journal of Electronic Materials, 35, 1495-1502(2006).
[35] QIN G, KONG J C, YANG J et al. HgCdTe films grown by MBE on CZT(211)B substrates. Journal of Electronic Materials, 52, 2441-2448(2023).
[36] BRUNETT B A, VAN SCYOC J M, HILTON N R et al. The performance effects of crystal boundaries in cadmium zinc telluride radiation spectrometers. IEEE Transactions on Nuclear Science, 47, 1353-1359(2000).
[37] JAMES R B, BRUNETT B, HEFFELFINGER J et al. Material properties of large-volume cadmium zinc telluride crystals and their relationship to nuclear detector performance. Journal of Electronic Materials, 27, 788-799(1998).
[38] SCHIEBER M, SCHLESINGER T E, JAMES R B et al. Study of impurity segregation, crystallinity, and detector performance of melt-grown cadmium zinc telluride crystals. Journal of Crystal Growth, 237, 2082-2090(2002).
[39] FAN Y X, XU Q Q, WU Q. Microdefects in cadmium zinc telluride crystals. Infrared Technology, 39, 694(2017).
[40] XU L Y, LIU Z, LIANG L. Effect of high-dose ion irradiation on the optoelectronic properties of CdZnTe∶In crystals. Rare Metal Materials and Engineering, 50, 1941-1945(2021).
[41] TYAGI M, GADKARI S C. Growth ofsingle crystals for nuclear radiation detection, 55-80(2022).
[42] WU Q, LIU J G, XU Q Q et al. Research on directional welding technology of CdZnTe seed crystals. Laser & Infrared, 50, 333-336(2020).
[43] ROY U N, BAKER J N, CAMARDA G S et al. Evaluation of crystalline quality of traveling heater method (THM) grown Cd0.9Zn0.1Te0.98Se0.02 crystals. Applied Physics Letters, 120, 242103(2022).
[44] BELAS E, BUGÁR M, GRILL R et al. Elimination of inclusions in (CdZn)Te substrates by post-grown annealing. Journal of Electronic Materials, 36, 1025-1030(2007).
[45] YU P F, JIE W Q, WANG T. Effect of Te atmosphere annealing on the properties of CdZnTe single crystals. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 643, 53-56(2011).
[46] XU C, SHENG F F, YANG J R. Annealing of CdZnTe materials to reduce inclusion defects. Journal of Crystal Growth, 451, 126-131(2016).
[47] SHENG F F, YANG J R, SUN S W et al. Influence of Cd-rich annealing on defects in Te-rich CdZnTe materials. Journal of Electronic Materials, 43, 2702-2708(2014).
[48] LI G Q, ZHANG X L, JIE W Q et al. Thermal treatment of detector-grade CdZnTe. Journal of Crystal Growth, 295, 31-35(2006).
[49] LI G Q, ZHANG X L, HUA H et al. Upgrading of CdZnTe by annealing with pure Cd and Zn metals. Semiconductor Science Technology, 21, 392-396(2006).
[50] HUANG Z, WU S Y, CHEN B S et al. Tailoring the defects and resistivity in CdZnTe single crystal via one-step annealing with CdTe compound. Vacuum, 217, 112519(2023).
[51] XU L Y, WANG J Y, DONG J P et al. Improvement of surface defects in CdZnTe crystals by rapid thermal annealing. Journal of Electronic Materials, 49, 4563-4568(2020).
[52] MA J, KUCIAUSKAS D, ALBIN D et al. Dependence of the minority-carrier lifetime on the stoichiometry of CdTe using time-resolved photoluminescence and first-principles calculations. Physical Review Letters, 111(2013).
[53] YANG G, BOLOTNIKOV A E, FOCHUK P M et al. Study on thermal annealing of cadmium zinc telluride (CZT) crystals, 780507(2010).
[54] HE Y H, JIE W Q, WANG T et al. Migration of Te inclusions in CdZnTe single crystals under the temperature gradient annealing. Journal of Crystal Growth, 402, 15-21(2014).
[55] KIM K H, CARCELÉN V et al. Defect levels and thermomigration of Te precipitates in CdZnTe∶Pb. Journal of Crystal Growth, 312, 781-784(2010).
[56] KIM K H, BOLOTNIKOV A E et al. Temperature-gradient annealing of CdZnTe under Te overpressure. Journal of Crystal Growth, 354, 62-66(2012).
[57] DUFF M C, LYNN K G, JONES K et al. Characterization of secondary phases in modified vertical Bridgman growth CZT, 74490(2009).
[58] SHEN J, AIDUN D K, REGEL L et al. Characterization of precipitates in CdTe and Cd1-xZnxTe grown by vertical Bridgman-Stockbarger technique. Journal of Crystal Growth, 132, 250-260(1993).
[59] HE Y H, JIE W Q, XU Y D et al. Matrix-controlled morphology evolution of Te inclusions in CdZnTe single crystal. Scripta Materialia, 67, 5-8(2012).
[60] EGARIEVWE S U, YANG G, EGARIEVWE A A et al. Post-growth annealing of Bridgman-grown CdZnTe and CdMnTe crystals for room-temperature nuclear radiation detectors. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 784, 51-55(2015).
[61] YANG G, BOLOTNIKOV A E, FOCHUK P M et al. Post-growth thermal annealing study of CdZnTe for developing room-temperature X-ray and gamma-ray detectors. Journal of Crystal Growth, 379, 16-20(2013).
[62] PIACENTINI G, ZAMBELLI N, BENASSI G et al. Two-step thermal process in tellurium vapor for tellurium inclusion annealing in high resistivity CdZnTe crystals. Journal of Crystal Growth, 415, 15-19(2015).
[63] KIM K, HWANG S, YU H et al. Two-step annealing to remove Te secondary-phase defects in CdZnTe while preserving the high electrical resistivity. IEEE Transactions on Nuclear Science, 65, 2333-2337(2018).
[64] KIM E, KIM Y, BOLOTNIKOV A E et al. Detector performance and defect densities in CdZnTe after two-step annealing. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 923, 51-54(2019).
[65] RUSTOM D. Low temperature thermal annealing of detector grade CdZnTe (CZT), 41-50(2010).
[66] KIM K H, HWANG S, FOCHUK P et al. The effect of low-temperature annealing on a CdZnTe detector. IEEE Transactions on Nuclear Science, 63, 2278-2282(2016).
[67] LIU Y, ZHU S F, ZHAO B J et al. Annealing after surface passivation of CdZnTe wafers. Journal of Synthetic Crystals, 40, 1107-1110(2011).
[68] HWANG S, YU H et al. High-temperature annealing of CdZnTe detectors. IEEE Transactions on Nuclear Science, 64, 2966-2969(2017).
[69] SWAIN S K, JONES K A, DATTA A et al. Study of different cool down schemes during the crystal growth of detector grade CdZnTe. IEEE Transactions on Nuclear Science, 58, 2341-2345(2011).
[70] ZHANG T, MIN J H, LIANG X Y et al. Effect of in situ annealing on properties of CdZnTe crystals. Journal of Shanghai University (Natural Science Edition), 20, 701-706(2014).
[71] HUANG Z, WU S Y, CHEN B S et al. Enhanced performance CdZnTe single crystal with few surface damages via solution based annealing. Sensors and Actuators A: Physical, 369, 115168(2024).
Get Citation
Copy Citation Text
Xiao WU, Wen ZHAO, Wenbin QI, Linwei SONG, Xiangkun LI, Jun JIANG, Jincheng KONG, Shanli WANG. Research Progress on Thermal Annealing Technologies of CZT Crystals[J]. Journal of Synthetic Crystals, 2025, 54(6): 912
Category:
Received: Feb. 11, 2025
Accepted: --
Published Online: Jul. 8, 2025
The Author Email: Shanli WANG (wshanli@hotmail.com)