Journal of Synthetic Crystals, Volume. 54, Issue 6, 912(2025)

Research Progress on Thermal Annealing Technologies of CZT Crystals

Xiao WU, Wen ZHAO, Wenbin QI, Linwei SONG, Xiangkun LI, Jun JIANG, Jincheng KONG, and Shanli WANG*
Figures & Tables(9)
T-x phase diagram of CdTe[17] and typical secondary phase image[29]. (a) T-x phase diagram of CdTe[17]; (b) typical Te secondary phase[29]; (c) typical Cd secondary phase[29]
Effect of isothermal annealing on CZT crystals. (a)~(d) Comparison of infrared transmission imaging of CZT wafer before and after isothermal annealing (wafer/Te source temperature is 500/450 ℃, (b), (c), (d) annealing time is 60, 120, 240 h respectively)[45]; (e) low temperature fluorescence change of CZT wafer with annealing temperature[51]
Effect of gradient annealing on CZT crystals. (a) “Thermal migration” of Te secondary phase under temperature gradient (700 ℃ annealing for 10 h with a temperature gradient of 45 ℃/cm); (b) voids inside the Te secondary phase of pristine wafer[58];(c) voids inside the Te secondary phase after annealing (Cd source annealing at 700 ℃ for 10 min)[58]
Effect of step annealing on CZT crystals. Infrared transmission imaging of Te secondary phase before (a) and after (b) step annealing. The first annealing condition is Cd atmosphere, the wafer/source temperature is 700/600 ℃, 24 h, and the second annealing condition is Te atmosphere, the wafer/source temperature is 540/380 ℃, 120 h)[63]; (c) I-V curves of the pristine wafer, the crystal after the first annealing (Cd annealing), and the crystal after the second annealing (Te annealing)[63]
Effect of device annealing on CZT crystals. (a) Device annealing in air[66]; (b) device annealing in vacuum[66]
Effect of in-situ annealing on CZT crystals. Infrared transmission imaging of the secondary phase before (a) and after (b) in-situ annealing[29]; EPD imaging before (c) and after (d) in-situ annealing[29]; in-situ annealing conditions: Cd atmosphere, 750 °C, 168 h
Effect of solution annealing on CZT crystals[71]. (a) SEM image of the crystal surface after vapor phase annealing; (b) SEM image of the crystal surface after solution annealing[71]; (c) changes in resistivity with different solution annealing time[71]
  • Table 1. Effects of different <i>in-situ</i> annealing conditions on CZT secondary phase SP, resistivity <i>R</i>, and carrier mobility-lifetime product <i>μτ</i>

    View table
    View in Article

    Table 1. Effects of different <i>in-situ</i> annealing conditions on CZT secondary phase SP, resistivity <i>R</i>, and carrier mobility-lifetime product <i>μτ</i>

    In-situ annealing at different cool down rates
    Cool down rate/(℃·h-1Mean diameter of SP/μmVolume ratio of SP/%R/(Ω·cm)μτ/(cm2·V-1
    73.509.0×10-31.69×10101.000×10-3
    142.951.8×10-31.80×10102.300×10-3
    202.575.0×10-31.00×10101.720×10-3
    272Edge2.000.4×10-310.800×10-3
    Center3.694.0×10-32.00×10101.260×10-3
    Temperature gradient in-situ annealing (temperatures of hot/cold side = 850/750 ℃)
    Hot side7.8810.5×10-32.10×10100.752×10-3
    Cold side7.917.0×10-32.63×10100.606×10-3
  • Table 2. Comparison of key features of various annealing techniques

    View table
    View in Article

    Table 2. Comparison of key features of various annealing techniques

    退火技术主要目的优点缺点特殊条件典型效果适用场景

    恒温

    退火

    去除沉积相,改善晶体质量可完全去除Cd沉积相;改善近表面晶体结构Te沉积相难以完全消除;高温可能增加位错密度退火源选择取决于晶片状态(例如,Te气氛,片/源温度500/500 ℃,120 h45Cd沉积相被完全消除;电阻率提升至1011 Ω·cm量级;红外透过率增加至60%以上45富Cd晶片;需要改善表面结构

    梯度

    退火

    清除Te沉积相Te沉积相消除效率高(70%~90%)显著降低电阻率;可能增加某些尺寸沉积相密度需在晶体径向方向构建温度梯度(例如,Cd/Zn气氛,片/源温度(740~750)/627 ℃,温度梯度8 ℃/cm,120 h54Te沉积相消除效率大于90%54,但电阻率从1010 Ω·cm降低3~6个数量级5356富Te晶片;Te沉积相严重

    分步

    退火

    减少Te沉积相并恢复高电阻率可恢复高电阻率;可能降低位错/层错可能增加深能级缺陷;难以精确控制点缺陷浓度先Cd气氛退火,后Te气氛退火(例如,Cd气氛,片/源温度700/600 ℃,24 h一次退火 + Te气氛,540/380 ℃, 120 h二次退火63Te沉积相完全消除,且电阻率恢复至1010 Ω·cm量级63需要同时控制沉积相和电阻率

    器件

    退火

    降低漏电流降低表面漏电流高温可能导致体漏电流增加;可能改变界面特性温度通常<470 ℃;空气退火效果更好(例如,空气氛围,120 ℃,40 min66促进形成均匀致密表面氧化钝化层,表面漏电流降低96%66器件制备后期;需要优化表面特性

    原位

    退火

    缩短工艺时间,减少表面损伤减少表面损伤导致的位错增殖;工艺时间短需精确控制退火参数在生长炉中直接进行(例如,Cd气氛,950 ℃,60 h29Te沉积相密度从500 cm-2降低至最小77 cm-2;位错密度无明显增殖;重复性高29晶体生长后直接处理;需要快速优化

    溶液

    退火

    改善内部点缺陷密度和表面形态过程温和;改善表面平滑度;引入深能级缺陷技术较新,需要进一步研究使用CdCl2溶液作退火介质(例如,CdCl2溶液,80 ℃, 30 h71红外透过率提高至大于60%;电阻率增加至1010 Ω·cm量级;表面损伤相较气相退火明显降低71需要温和处理;关注表面形态改善
Tools

Get Citation

Copy Citation Text

Xiao WU, Wen ZHAO, Wenbin QI, Linwei SONG, Xiangkun LI, Jun JIANG, Jincheng KONG, Shanli WANG. Research Progress on Thermal Annealing Technologies of CZT Crystals[J]. Journal of Synthetic Crystals, 2025, 54(6): 912

Download Citation

EndNote(RIS)BibTexPlain Text
Save article for my favorites
Paper Information

Category:

Received: Feb. 11, 2025

Accepted: --

Published Online: Jul. 8, 2025

The Author Email: Shanli WANG (wshanli@hotmail.com)

DOI:10.16553/j.cnki.issn1000-985x.2025.0024

Topics