Chinese Journal of Lasers, Volume. 50, Issue 1, 0113017(2023)
Thermal Conductivity of Electrically Biased Few-Layer Suspended Graphene Devices Measured by Raman Spectroscopy
[1] Balandin A A, Ghosh S, Bao W Z et al. Superior thermal conductivity of single-layer graphene[J]. Nano Letters, 8, 902-907(2008).
[2] Shi L, Li D Y, Yu C et al. Measuring thermal and thermoelectric properties of one-dimensional nanostructures using a microfabricated device[J]. Journal of Heat Transfer, 125, 881-888(2003).
[3] Cahill D G, Katiyar M, Abelson J R. Thermal conductivity of a-Si: H thin films[J]. Physical Review B, 50, 6077-6081(1994).
[4] Cahill D G. Analysis of heat flow in layered structures for time-domain thermoreflectance[J]. Review of Scientific Instruments, 75, 5119-5122(2004).
[5] Faugeras C, Faugeras B, Orlita M et al. Thermal conductivity of graphene in corbino membrane geometry[J]. ACS Nano, 4, 1889-1892(2010).
[6] Cai W W, Moore A L, Zhu Y W et al. Thermal transport in suspended and supported monolayer graphene grown by chemical vapor deposition[J]. Nano Letters, 10, 1645-1651(2010).
[7] Zhou H Q, Zhu J X, Liu Z et al. High thermal conductivity of suspended few-layer hexagonal boron nitride sheets[J]. Nano Research, 7, 1232-1240(2014).
[8] Sahoo S, Gaur A P S, Ahmadi M et al. Temperature-dependent Raman studies and thermal conductivity of few-layer MoS2[J]. The Journal of Physical Chemistry C, 117, 9042-9047(2013).
[9] Yan R S, Simpson J R, Bertolazzi S et al. Thermal conductivity of monolayer molybdenum disulfide obtained from temperature-dependent Raman spectroscopy[J]. ACS Nano, 8, 986-993(2014).
[10] Peimyoo N, Shang J, Yang W et al. Thermal conductivity determination of suspended mono- and bilayer WS2 by Raman spectroscopy[J]. Nano Research, 8, 1210-1221(2015).
[11] Neto A H C, Guinea F, Peres N M R et al. The electronic properties of graphene[J]. Reviews of Modern Physics, 81, 109-162(2009).
[12] Novoselov K S, Geim A K, Morozov S V et al. Electric field effect in atomically thin carbon films[J]. Science, 306, 666-669(2004).
[13] Lee C G, Wei X D, Kysar J W et al. Measurement of the elastic properties and intrinsic strength of monolayer graphene[J]. Science, 321, 385-388(2008).
[14] Grigorenko A N, Polini M, Novoselov K S. Graphene plasmonics[J]. Nature Photonics, 6, 749-758(2012).
[15] Novoselov K S, Mishchenko A, Carvalho A et al. 2D materials and van der Waals heterostructures[J]. Science, 353, aac9439(2016).
[16] Wang Z Q, Xie R G, Bui C T et al. Thermal transport in suspended and supported few-layer graphene[J]. Nano Letters, 11, 113-118(2011).
[17] Chen S S, Li Q Y, Zhang Q M et al. Thermal conductivity measurements of suspended graphene with and without wrinkles by micro-Raman mapping[J]. Nanotechnology, 23, 365701(2012).
[18] Ma T, Liu Z B, Wen J X et al. Tailoring the thermal and electrical transport properties of graphene films by grain size engineering[J]. Nature Communications, 8, 14486(2017).
[19] Nakagawa K, Satoh K, Murakami S et al. Controlling the thermal conductivity of multilayer graphene by strain[J]. Scientific Reports, 11, 19533(2021).
[20] Yalon E, McClellan C J, Smithe K K H et al. Energy dissipation in monolayer MoS2 electronics[J]. Nano Letters, 17, 3429-3433(2017).
[21] Behranginia A, Hemmat Z, Majee A K et al. Power dissipation of WSe2 field-effect transistors probed by low-frequency Raman thermometry[J]. ACS Applied Materials & Interfaces, 10, 24892-24898(2018).
[22] Kim D, Kim H, Yun W S et al. Energy dissipation mechanism revealed by spatially resolved Raman thermometry of graphene/hexagonal boron nitride heterostructure devices[J]. 2D Materials, 5, 025009(2018).
[23] Chen C C, Li Z, Shi L et al. Thermal interface conductance across a graphene/hexagonal boron nitride heterojunction[J]. Applied Physics Letters, 104, 081908(2014).
[24] Sakata H, Dresselhaus G, Dresselhaus M S et al. Effect of uniaxial stress on the Raman spectra of graphite fibers[J]. Journal of Applied Physics, 63, 2769-2772(1988).
[25] Yalon E, Aslan Ö B, Smithe K K H et al. Temperature-dependent thermal boundary conductance of monolayer MoS2 by Raman thermometry[J]. ACS Applied Materials & Interfaces, 9, 43013-43020(2017).
[27] Ghosh S, Bao W Z, Nika D L et al. Dimensional crossover of thermal transport in few-layer graphene[J]. Nature Materials, 9, 555-558(2010).
[28] Sadeghi M M, Jo I, Shi L. Phonon-interface scattering in multilayer graphene on an amorphous support[J]. Proceedings of the National Academy of Sciences of the United States of America, 110, 16321-16326(2013).
[29] Flexural phonons and thermal transport in graphene[J]. Physical Review B, 82, 115427(2010).
Lee J U, Lindsay L, Broido D A, Yoon D, Kim H, Mingo N et al. Thermal conductivity of suspended pristine graphene measured by Raman spectroscopy[J]. Physical Review B, 83, 081419(2011).
[30] Chen S S, Moore A L, Cai W W et al. Raman measurements of thermal transport in suspended monolayer graphene of variable sizes in vacuum and gaseous environments[J]. ACS Nano, 5, 321-328(2011).
[31] Chen S S, Wu Q Z, Mishra C et al. Thermal conductivity of isotopically modified graphene[J]. Nature Materials, 11, 203-207(2012).
[32] Ghosh S, Calizo I, Teweldebrhan D et al. Extremely high thermal conductivity of graphene: prospects for thermal management applications in nanoelectronic circuits[J]. Applied Physics Letters, 92, 151911(2008).
[33] Dorgan V E, Behnam A, Conley H J et al. High-field electrical and thermal transport in suspended graphene[J]. Nano Letters, 13, 4581-4586(2013).
[34] Pettes M T, Jo I, Yao Z et al. Influence of polymeric residue on the thermal conductivity of suspended bilayer graphene[J]. Nano Letters, 11, 1195-1200(2011).
[35] Xu X F, Pereira L F C, Wang Y et al. Length-dependent thermal conductivity in suspended single-layer graphene[J]. Nature Communications, 5, 3689(2014).
Get Citation
Copy Citation Text
Ziru Cui, Siyu Zhou, Yang Xiao, Yucheng Zhang, Chucai Guo, Ken Liu, Fang Luo, Mengjian Zhu. Thermal Conductivity of Electrically Biased Few-Layer Suspended Graphene Devices Measured by Raman Spectroscopy[J]. Chinese Journal of Lasers, 2023, 50(1): 0113017
Category: micro and nano optics
Received: Aug. 10, 2022
Accepted: Nov. 11, 2022
Published Online: Jan. 13, 2023
The Author Email: Luo Fang (luofang@nudt.edu.cn), Zhu Mengjian (zhumengjian11@ nudt.edu.cn)