Journal of Inorganic Materials, Volume. 40, Issue 6, 563(2025)
[1] COLLINS E, PANTOYA M, NEUBER A A et al. Piezoelectric ignition of nanocomposite energetic materials[J]. Journal of Propulsion and Power, 30, 15(2014).
[2] ZHOU T, WANG S, BAO D et al. Correlation and comprehensive selection of the piezoelectric ignition material parameters[J]. Ferroelectrics, 195, 97(1997).
[3] WAN X, CONG H, JIANG G et al. A review on PVDF nanofibers in textiles for flexible piezoelectric sensors[J]. ACS Applied Nano Materials, 6, 1522(2023).
[4] LU B, XIE L, LEI H et al. Research progress in self-powered pressure sensors for Internet of healthcare[J]. Advanced Materials Technologies, 9, 2301480(2024).
[5] ZHI C, SHI S, SI Y et al. Recent progress of wearable piezoelectric pressure sensors based on nanofibers, yarns, and their fabrics
[6] MESHKINZAR A, AL-JUMAILY A M. Cylindrical piezoelectric PZT transducers for sensing and actuation[J]. Sensors, 23, 3042(2023).
[7] PYUN J Y, KIM Y H, PARK K K. Design of piezoelectric acoustic transducers for underwater applications[J]. Sensors, 23, 1821(2023).
[8] JIN H, GAO X, REN K et al. Review on piezoelectric actuators based on high-performance piezoelectric materials[J]. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 69, 3057(2022).
[9] LIU J, GAO X, JIN H et al. Miniaturized electromechanical devices with multi-vibration modes achieved by orderly stacked structure with piezoelectric strain units[J]. Nature Communications, 13:, 6567(2022).
[10] GAO X, YANG J, WU J et al. Piezoelectric actuators and motors: materials, designs, and applications[J]. Advanced Materials Technologies, 5:, 1900716(2019).
[12] YU Y, CHENG Z, CHANG J et al. Enhanced in-plane omnidirectional energy harvesting from extremely weak magnetic fields
[13] YU Z, YANG J, XU L et al. Giant tridimensional power responses in a T-shaped magneto-mechano-electric energy harvester[J]. Energy & Environmental Science, 17, 1426(2024).
[14] YU Z, YANG J, CAO J et al. A PMNN-PZT piezoceramic based magneto-mechano-electric coupled energy harvester[J]. Advanced Functional Materials, 32, 2111140(2022).
[15] YU Z, LI Z, YUAN X et al. Enhanced extremely weak-field energy harvesting
[16] YUAN X, GAO X, YANG J et al. The large piezoelectricity and high power density of a 3D-printed multilayer copolymer in a rugby ball-structured mechanical energy harvester[J]. Energy & Environmental Science, 13, 152(2020).
[17] ZHU R, CHENG Z, LV X et al. Piezo-turned magnet rotation for ELF/SLF cross-medium communication in omni-direction[J]. Advanced Optical Materials, 12, 2400461(2024).
[18] CHENG Z, ZHOU J, WANG B et al. A bionic flapping magnetic-dipole resonator for ELF cross-medium communication[J]. Advanced Science, 11, 2403746(2024).
[20] WANG J, QIN X, LIU Z et al. Development and performance analysis of hemispherical piezoelectric transducer for road applications[J]. Ferroelectrics, 584, 70(2021).
[21] ZHENG X, HE L, WANG S et al. A review of piezoelectric energy harvesters for harvesting wind energy[J]. Sensors and Actuators A: Physical, 352:, 114190(2023).
[22] HE L, HAN Y, SUN L et al. A rotating piezoelectric- electromagnetic hybrid harvester for water flow energy[J]. Energy Conversion and Management, 290:, 117221(2023).
[23] ZHANG L, SUN D, CHAI M et al. Ultrafast photoinduced strain in super-tetragonal PbTiO3 ferroelectric films[J]. Science China Materials, 64, 1679(2021).
[26] PARK S E, SHROUT T R. Ultrahigh strain and piezoelectric behavior in relaxor based ferroelectric single crystals[J]. Journal of Applied Physics, 82, 1804(1997).
[27] SERVICE R F. Shape-changing crystals get shiftier[J]. Science, 275, 1878(1997).
[28] SUN Y, CHANG Y, WU J et al. Ultrahigh energy harvesting properties in textured lead-free piezoelectric composites[J]. Journal of Materials Chemistry A, 7, 3603(2019).
[29] YANG Z, ZHOU S, ZU J et al. High-performance piezoelectric energy harvesters and their applications[J]. Joule, 2, 642(2018).
[30] WU J, ZHANG S, LI F. Prospect of texture engineered ferroelectric ceramics[J]. Applied Physics Letters, 121, 120501(2022).
[31] LE FERRAND H. Magnetic slip casting for dense and textured ceramics: a review of current achievements and issues[J]. Journal of the European Ceramic Society, 41, 24(2021).
[32] WANG M, FAN L, WANG S et al. Fabrication of textured cerium-doped lutetium oxyorthosilicate ceramics by slip casting in a strong magnetic field[J]. Journal of the American Ceramic Society, 105, 5102(2022).
[33] LI R Z, WANG X G, YUAN J H et al. Enhanced high-temperature strength in textured (Ti1/3Zr1/3Hf1/3)B2 medium-entropy ceramics
[34] SONG Y, LIU P, WU W et al. High-performance colossal permittivity for textured (Al+Nb) co-doped TiO2 ceramics sintered in nitrogen atmosphere[J]. Journal of the European Ceramic Society, 41, 4146(2021).
[35] SHI Y, HE Q, WANG A et al. Effect of additive content on texture evolution and mechanical properties of Si3N4 ceramics prepared by hot pressing[J]. Materials Science and Engineering: A, 898:, 146348(2024).
[36] LI J, JIANG Q, PAN Z et al. Fabrication of silicon nitride with high thermal conductivity and flexural strength by hot-pressing flowing sintering[J]. International Journal of Applied Ceramic Technology, 21, 2841(2024).
[37] FU Z, WEI Y, LIU Y et al. Polycrystalline thermosensitive ceramic oxides in CaCeNbWO8: density, texture, and thermal aging stability[J]. Journal of the American Ceramic Society, 105, 2442(2021).
[38] ZHANG Z, DUAN X, TIAN Z et al. Texture and anisotropy of hot-pressed h-BN matrix composite ceramics with
[39] WALTON R L, KUPP E R, MESSING G L. Additive manufacturing of textured ceramics: a review[J]. Journal of Materials Research, 36, 3591(2021).
[40] AKÇA E, DURAN C, KOWALSKI B et al. Templated grain growth of Bi(Zn0.5Zr0.5)O3 modified BiScO3-PbTiO3piezoelectric ceramics for high temperature applications[J]. Journal of Asian Ceramic Societies, 9, 874(2021).
[41] ZHANG L, LIN J, LI G et al. Dual-template textured BNT-based ceramics with ultra-low electrostrain hysteresis[J]. Journal of the European Ceramic Society, 44, 7597(2024).
[42] LI X, YAO M, LIN W et al. Morphological evolution of plate-like B-site complex perovskite Pb(Zr
[43] PENG J, LIU W, ZENG J et al. Large electromechanical strain at high temperatures of novel <001> textured BiFeGaO3-BaTiO3 based ceramics[J]. Journal of Materials Science & Technology, 48:, 92(2020).
[44] LIU Y, ZHANG H, MA C et al. Fine grained textured BaTiO3- based piezoelectric ceramics with outstanding strain properties for the lead-free multilayer actuator[J]. Ceramics International, 50, 26018(2024).
[45] LAI L X, ZHAO Z H, TIAN S et al. Ultrahigh electrostrain with excellent fatigue resistance in textured Nb5+-doped (Bi0.5Na0.5)TiO3- based piezoceramics[J]. Journal of Advanced Ceramics, 12, 487(2023).
[46] TATO M, SHIRNONISHI R, HAGIWARA M et al. Reactive templated grain growth and thermoelectric power factor enhancement of textured CuFeO2 ceramics[J]. ACS Applied Energy Materials, 3, 1979(2020).
[47] WU Q, ZHANG F Q, WANG B et al. A lead-free KNN-based, co-fired multilayered piezoceramic energy harvester with a high output current and power[J]. Journal of Materiomics, 11, 100876(2025).
[48] CHANG Y, SUN Y, WU J et al. Formation mechanism of highly [001]c textured Pb(In1/2Nb1/2)O3-Pb(Mg1/3Nb2/3)O3-PbTiO3 relaxor ferroelectric ceramics with giant piezoelectricity[J]. Journal of the European Ceramic Society, 36, 1973(2016).
[49] LOTGERING F K. Topotactical reactions with ferrimagnetic oxides having hexagonal crystal structures—II[J]. Journal of Inorganic & Nuclear Chemistry, 16, 100(1960).
[51] WU Q, ZHAO L, CHEN X et al. Efficiently enhanced energy storage performance of Ba2Bi4Ti5O18 film by co-doping Fe3+ and Ta5+ ion with larger radius[J]. Chinese Physics B, 31, 097701(2022).
[52] WU Q, WU X, ZHAO Y S et al. Design of lead-free films with high energy storage performance
[53] WU Q, CHEN X, ZHAO L et al. The relaxor properties and energy storage performance of Aurivillius compounds with different number of perovskite-like layers[J]. Journal of Alloys and Compounds, 911:, 165081(2022).
[54] WU Q, ZHAO Y, ZHOU Y et al. Energy storage properties of composite films with relaxor antiferroelectric behaviors[J]. Journal of Alloys and Compounds, 881:, 160576(2021).
[56] PAN M J, RANDALL C A. A brief introduction to ceramic capacitors[J]. IEEE Electrical Insulation Magazine, 26, 44(2010).
[57] YANG S, LI J, LIU Y et al. Textured ferroelectric ceramics with high electromechanical coupling factors over a broad temperature range[J]. Nature Communications, 12:, 1414(2021).
[58] TOK A I Y, BOEY F Y C, LAM Y C. Non-newtonian fluid flow model for ceramic tape casting[J]. Materials Science and Engineering: A, 280, 282(2000).
[59] BIAN L, QI X, LI K et al. High-performance [001]c-textured PNN-PZT relaxor ferroelectric ceramics for electromechanical coupling devices[J]. Advanced Functional Materials, 30, 2001846(2020).
[60] WU Y, SOON P S, LU J T et al. Life cycle assessment of lead-free potassium sodium niobate
[61] KUWATA J, UCHINO K, NOMURA S. Dielectric and piezoelectric properties of 0.91Pb(Zn1/3Nb2/3)O3-0.09PbTiO3 single crystals[J]. Japanese Journal of Applied Physics, 21, 1298(1982).
[62] ZHANG Y, XUE D, WU H et al. Adaptive ferroelectric state at morphotropic phase boundary: coexisting tetragonal and rhombohedral phases[J]. Acta Materialia, 71:, 176(2014).
[63] POTERALA S F, TROLIER-MCKINSTRY S, MEYER R J et al. Processing, texture quality, and piezoelectric properties of <001>c textured (1-
[64] YAN Y, WANG Y U, PRIYA S. Electromechanical behavior of [001]-textured Pb(Mg1/3Nb2/3)O3-PbTiO3 ceramics[J]. Applied Physics Letters, 100, 192905(2012).
[65] BERKSOY-YAVUZ A, MENSUR-ALKOY E. Enhanced soft character of crystallographically textured Mn-doped binary 0.675[Pb(Mg1/3Nb2/3)O3]-0.325[PbTiO3] ceramics[J]. Journal of Electronic Materials, 47, 6557(2018).
[66] JIA H, YANG S, ZHU W et al. Improved piezoelectric properties of Pb(Mg1/3Nb2/3)O3-PbTiO3 textured ferroelectric ceramics
[67] YANG S, WANG M, WANG L et al. Achieving both high electromechanical properties and temperature stability in textured PMN-PT ceramics[J]. Journal of the American Ceramic Society, 105, 3322(2021).
[68] ZHENG K, QUAN Y, ZHUANG J et al. Achieving high piezoelectric performances with enhanced domain-wall contributions in <001>-textured Sm-modified PMN-29PT ceramics[J]. Journal of the European Ceramic Society, 41, 24584(2021).
[69] MORIANA A D, ZHANG S J. Determining the effects of BaTiO3 template alignment on template grain growth of Pb(Mg1/3Nb2/3)O3- PbTiO3 and effects on piezoelectric properties[J]. Journal of the European Ceramic Society, 42, 2752(2022).
[70] YAN Y, GENG L D, ZHU L F et al. Ultrahigh piezoelectric performance through synergistic compositional and microstructural engineering[J]. Advanced Science, 9, 2105715(2022).
[71] TANG M, LIU X, WANG Y et al. High piezoelectric response in [001] textured Sm3+ doped Pb(Mg1/3Nb2/3)O3-PbTiO3 ceramics[J]. Journal of Applied Physics, 133, 184102(2023).
[72] WANG Q, YAO M, LIN W et al. Microstructure and electrical properties of Er-doped 0.67Pb(Mg1/3Nb2/3)O3-0.33PbTiO3 ceramics with BaTiO3 templates[J]. Ceramics International, 49, 437(2023).
[73] LI F, CABRAL M J, XU B et al. Giant piezoelectricity of Sm-doped Pb(Mg1/3Nb2/3)O3-PbTiO3 single crystals[J]. Science, 364, 264(2019).
[75] ZHANG S, LI F. High performance ferroelectric relaxor-PbTiO3 single crystals: status and perspective[J]. Journal of Applied Physics, 111, 031301(2012).
[76] YAN Y, CHO K H, PRIYA S. Piezoelectric properties and temperature stability of Mn-doped Pb(Mg1/3Nb2/3)-PbZrO3-PbTiO3 textured ceramics[J]. Applied Physics Letters, 100, 132908(2012).
[77] YAN Y, CHO K H, MAURYA D et al. Giant energy density in [001]-textured Pb(Mg1/3Nb2/3)O3-PbZrO3-PbTiO3 piezoelectric ceramics[J]. Applied Physics Letters, 102, 042903(2013).
[78] ZATE T T, KIM M, JEON J H. Outstanding unipolar strain of textured Pb(Mg1/3Nb2/3)O3-PbZrO3-PbTiO3 piezoelectric ceramics manufactured by particle size distribution control of the plate-like BaTiO3 template[J]. Sensors and Actuators A: Physical, 335:, 113373(2022).
[79] LIU L, YANG B, YANG S et al. Cu-modified Pb(Mg1/3Nb2/3)O3- PbZrO3-PbTiO3 textured ceramics with enhanced electromechanical properties and improved thermal stability[J]. Journal of the European Ceramic Society, 42, 2743(2022).
[80] KIM E J, KIM S W, KIM D S et al. Piezoelectric properties of [001]-textured high-power PMnN-PZT piezoceramics sintered at a low temperature[J]. Journal of the European Ceramic Society, 43, 1912(2023).
[81] YAN Y, GENG L D, LIU H et al. Near-ideal electromechanical coupling in textured piezoelectric ceramics[J]. Nature Communications, 13:, 3565(2022).
[82] DURSUN S, MENSUR-ALKOY E, UNVER M U et al. Enhancement of electrical properties in the ternary PMN-PT-PZ through compositional variation, crystallographic texture, and quenching[J]. Journal of the American Ceramic Society, 103, 24998(2019).
[83] LIU L, YANG B, LV R et al. Enhanced unipolar electrical fatigue resistance and related mechanism in grain-oriented Pb(Mg1/3Nb2/3)O3-Pb(Zr,Ti)O3 piezoceramics[J]. Journal of Materials Science & Technology, 145:, 40(2023).
[84] TANG M, HU L, WU Y et al. Electromechanical properties of [001]-textured Mn-PMN-PZT ceramics under hydrostatic pressure[J]. Journal of the American Ceramic Society, 107, 1042(2023).
[85] ZHANG Y, TANG M, WANG Y et al. Effect of post-annealing on the electrical properties of textured Pb(Mg1/3Nb2/3)O3-PbZrO3- PbTiO3 piezoelectric ceramics[J]. Ceramics International, 50, 18814(2024).
[86] CHANG Y, WU J, SUN Y et al. Enhanced electromechanical properties and phase transition temperatures in [001] textured Pb(In1/2Nb1/2)O3-Pb(Mg1/3Nb2/3)O3-PbTiO3 ternary ceramics[J]. Applied Physics Letters, 107, 082902(2015).
[87] DURAN C, DURSUN S, AKÇA E. High strain, <001>-textured Pb(Mg1/3Nb2/3)O3-Pb(Yb1/2Nb1/2)O3-PbTiO3 piezoelectric ceramics[J]. Scripta Materialia, 113:, 14(2016).
[88] WEI D, WANG H. Low-temperature sintering and enhanced piezoelectric properties of random and textured PIN-PMN-PT ceramics with Li2CO3[J]. Journal of the American Ceramic Society, 100, 1073(2016).
[89] CHANG Y, WATSON B, FANTON M et al. Enhanced texture evolution and piezoelectric properties in CuO-doped Pb(In1/2Nb1/2)O3-Pb(Mg1/3Nb2/3)O3-PbTiO3 grain-oriented ceramics[J]. Applied Physics Letters, 111, 232901(2017).
[90] DURAN C, CENGIZ S, ECEBAŞ N et al. Processing and characterization of <001>-textured Pb(Mg1/3Nb2/3)O3- Pb(Yb1/2Nb1/2)O3-PbTiO3 ceramics[J]. Journal of Materials Research, 32, 2471(2017).
[91] CHANG Y, WU J, LIU Z et al. Grain-oriented ferroelectric ceramics with single-crystal-like piezoelectric properties and low texture temperature[J]. ACS Applied Materials & Interfaces, 12, 38415(2020).
[92] BROVA M J, WATSON B H, WALTON R L et al. Templated grain growth of high coercive field CuO-doped textured PYN- PMN-PT ceramics[J]. Journal of the American Ceramic Society, 103, 6149(2020).
[93] BROVA M J, WATSON B H, WALTON R L et al. Relationship between composition and electromechanical properties of CuO-doped textured PYN-PMN-PT ceramics[J]. Journal of the European Ceramic Society, 41, 1230(2021).
[94] LENG H, YAN Y, LIU H et al. Design and development of high- power piezoelectric ceramics through integration of crystallographic texturing and acceptor-doping[J]. Acta Materialia, 206:, 116610(2021).
[95] JIA H, LIANG Z, LI Z et al. Texture technique to simultaneously achieve large electric field induced strain response and ultralow hysteresis in BMT-PMN-PT relaxor ferroelectric ceramics[J]. Scripta Materialia, 209:, 114409(2022).
[96] MORIANA A D, ZHANG S. Enhancing electromechanical properties of Pb(Sc1/2Nb1/2)O3-PbZrO3-PbTiO3 piezoelectric ceramics
[97] BIAN L, KOU Q, LIU L et al. Enhancing the temperature stability of 0.42PNN-0.21PZ-0.37PT ceramics through texture engineering[J]. ACS Applied Materials & Interfaces, 14, 3076(2022).
[98] YANG S, QIAO L, WANG J et al. Full matrix electromechanical properties of textured Pb(In1/2Nb1/2)O3-Pb(Sc1/2Nb1/2)O3-PbTiO3 ceramic[J]. Journal of Applied Physics, 131, 124104(2022).
[99] LENG H, YAN Y, WANG B et al. High performance high-power textured Mn/Cu-doped PIN-PMN-PT ceramics[J]. Acta Materialia, 234:, 118015(2022).
[100] LENG H, WANG Y U, YAN Y et al. Water quenched and acceptor-doped textured piezoelectric ceramics for off-resonance and on-resonance devices[J]. Small, 19, 2204454(2022).
[101] LENG H, YAN Y, LI X et al. High-power piezoelectric behavior of acceptor-doped <001> and <111> textured piezoelectric ceramics[J]. Journal of Materials Chemistry C, 11, 2229(2023).
[102] YANG S, TIAN F, LI C et al. Electromechanical properties of textured PIN-PSN-PT ceramics under uniaxial stress, hydrostatic pressure, and bias electric field[J]. Journal of Applied Physics, 133, 094104(2023).
[103] YANG S, ZHANG J, QIU C et al. Investigation on the planar Poisson’s ratio of <001>-oriented Pb(In1/2Nb1/2)O3-Pb(Mg1/3Nb2/3)O3- PbTiO3 ceramics[J]. Journal of the European Ceramic Society, 44, 3058(2024).
[104] ZATE T T, KO N R, YU H L et al. Textured Pb(Mg1/3Nb2/3)O3- Pb(In1/2Nb1/2)O3-PbTiO3 ceramics with enhanced piezoelectric properties and high Curie temperature prepared by low-temperature sintering[J]. Sensors and Actuators A: Physical, 366:, 114929(2024).
[105] WANG Q, BIAN L, LI K et al. Achieving ultrahigh electromechanical properties with high
[106] FENG X, LI L, XU X et al. Microstructure evolution and properties of textured, Pb(Zr1/2Ti1/2)O3-Pb(Zn1/3Nb2/3)O3-Pb(Ni1/3Nb2/3)O3 ceramics with plate-like BaZr0.1Ti0.9O3 template[J]. Journal of Alloys and Compounds, 1002:, 175439(2024).
[107] BIAN L, WANG Q, HE S et al. Excellent strain and temperature stability in PNT-PZT multilayer textured ceramics[J]. Journal of the European Ceramic Society, 44, 5048(2024).
[108] CHO S W, NA Y H, BAIK J M et al. Low-temperature sintered 0.5Pb(Ni1/3Nb2/3)O3-0.16PbZrO3-0.34PbTiO3 piezoelectric textured ceramics by Li2CO3 addition[J]. Journal of the American Ceramic Society, 107, 4178(2024).
[109] KIM E J, LEE T G, KIM D S et al. Textured Pb(Zr,Ti)O3- Pb[(Zn,Ni)1/3Nb2/3]O3 multilayer ceramics and their application to piezoelectric actuators[J]. Applied Materials Today, 20:, 100695(2020).
[110] ZHANG Z, WANG Z, YANG S et al. Textured ferroelectric ceramics based 1-3 piezoelectric composite for photoacoustic imaging[J]. Sensors and Actuators A: Physical, 380:, 116030(2024).
[111] HAO M, FAN G, CAI W et al. Texture tolerance to B-site valence mismatch for [001] textured Pb97.5%Ba2.5%[(Zn1/3Nb2/3)(1-
Get Citation
Copy Citation Text
Qiong WU, Binglin SHEN, Maohua ZHANG, Fangzhou YAO, Zhipeng XING, Ke WANG.
Category:
Received: Dec. 16, 2024
Accepted: --
Published Online: Sep. 2, 2025
The Author Email: Ke WANG (wang-ke@tsinghua.edu.cn)