Photonics Research, Volume. 10, Issue 8, 1964(2022)
Ultrafast miniaturized GaN-based optoelectronic proximity sensor
[1] H. K. Lee, S. I. Chang, E. Yoon. Dual-mode capacitive proximity sensor for robot application: implementation of tactile and proximity sensing capability on a single polymer platform using shared electrodes. IEEE Sens. J., 9, 1748-1755(2009).
[2] A. Braun, R. Wichert, A. Kuijper, D. W. Fellner. Capacitive proximity sensing in smart environments. J. Ambient Intell. Smart Environ., 7, 483-510(2015).
[3] Y. Huang, X. Cai, W. Kan, S. Qiu, X. Guo, C. Liu, P. Liu. A flexible dual-mode proximity sensor based on cooperative sensing for robot skin applications. Rev. Sci. Instrum., 88, 085005(2017).
[4] Y. Ye, C. Y. Zhang, C. L. He, X. Wang, J. J. Huang, J. H. Deng. A review on applications of capacitive displacement sensing for capacitive proximity sensor. IEEE Access, 8, 45325-45342(2020).
[5] S. H. Qiu, Y. Huang, X. Y. He, Z. G. Sun, P. Liu, C. X. Liu. A dual-mode proximity sensor with integrated capacitive and temperature sensing units. Meas. Sci. Technol., 26, 105101(2015).
[6] D. J. Sadler, C. H. Ahn. On-chip eddy current sensor for proximity sensing and crack detection. Sens. Actuators A Phys., 91, 340-345(2001).
[7] A. Bonen, R. E. Saad, K. C. Smith, B. Benhabib. A novel electrooptical proximity sensor for robotics: calibration and active sensing. IEEE Trans. Robot., 13, 377-386(1997).
[8] X. Lü, X. Li, F. Zhang, S. Wang, D. Xue, L. Qi, H. Wang, X. Li, W. Bao, R. Chen. A novel proximity sensor based on parallel plate capacitance. IEEE Sens. J., 18, 7015-7022(2017).
[9] J. Castellanos-Ramos, A. Trujillo-León, R. Navas-González, F. Barbero-Recio, J. A. Sánchez-Durán, Ó. Oballe-Peinado, F. Vidal-Verdú. Adding proximity sensing capability to tactile array based on off-the-shelf FSR and PSOC. IEEE Trans. Instrum. Meas., 69, 4238-4250(2019).
[10] L. Sant, A. Fant, S. Stojanovic, S. Fabbro, J. L. Ceballos. A 13.2 b optical proximity sensor system with 130 klx ambient light rejection capable of heart rate and blood oximetry monitoring. IEEE J. Solid-State Circuits, 51, 1674-1683(2016).
[11] C. H. Chen, C. F. Lin, K. H. Wang, H. C. Liu, H. W. Zan, H. F. Meng, W. Hortschitz, H. Steiner, A. Kainz, T. Sauter. High-resolution proximity sensor using flexible semi-transparent organic photo detector. Org. Electron., 49, 305-312(2017).
[12] K. Koyama, M. Shimojo, T. Senoo, M. Ishikawa. High-speed high-precision proximity sensor for detection of tilt, distance, and contact. IEEE Rob. Autom. Lett., 3, 3224-3231(2018).
[13] L. Bürgi, R. Pfeiffer, M. Mücklich, P. Metzler, M. Kiy, C. Winnewisser. Optical proximity and touch sensors based on monolithically integrated polymer photodiodes and polymer LEDs. Org. Electron., 7, 114-120(2006).
[14] M. Prosa, E. Benvenuti, D. Kallweit, P. Pellacani, M. Toerker, M. Bolognesi, L. Lopez-Sanchez, V. Ragona, F. Marabelli, S. Toffanin. Organic light-emitting transistors in a smart-integrated system for plasmonic-based sensing. Adv. Funct. Mater., 31, 2104927(2021).
[15] H. L. Tam, W. H. Choi, F. R. Zhu. Organic optical sensor based on monolithic integration of organic electronic devices. Electronics, 4, 623-632(2015).
[16] A. Laubsch, M. Sabathil, J. Baur, M. Peter, B. Hahn. High-power and high-efficiency InGaN-based light emitters. IEEE Trans. Electron Devices, 57, 79-87(2009).
[17] M. Meneghini, L. R. Trevisanello, G. Meneghesso, E. Zanoni. A review on the reliability of GaN-based LEDs. IEEE Trans. Device Mater. Reliab., 8, 323-331(2008).
[18] M. Meneghini, A. Tazzoli, G. Mura, G. Meneghesso, E. Zanoni. A review on the physical mechanisms that limit the reliability of GaN-based LEDs. IEEE Trans. Electron Devices, 57, 108-118(2009).
[19] D. Chen, D. Li, G. Zeng, F.-C. Hu, Y.-C. Li, Y.-C. Chen, X.-X. Li, J. Tang, C. Shen, N. Chi. GaN-based micro-light-emitting diode driven by a monolithic integrated ultraviolet phototransistor. IEEE Electron Device Lett., 43, 80-83(2021).
[20] S. Hwangbo, L. Hu, A. T. Hoang, J. Y. Choi, J.-H. Ahn. Wafer-scale monolithic integration of full-colour micro-led display using MoS2 transistor. Nat. Nanotechnol., 17, 500-506(2022).
[21] Y. Wang, X. Wang, B. Zhu, Z. Shi, J. Yuan, X. Gao, Y. Liu, X. Sun, D. Li, H. Amano. Full-duplex light communication with a monolithic multicomponent system. Light Sci. Appl., 7, 83(2018).
[22] B. Jia, X. Gao, Z. Ye, P. Liu, F. Hu, H. Zhu, Y. Wang. Monolithically integrated sensing, communication, and energy harvester. Energy Technol., 10, 2100793(2022).
[23] Z. Li, J. Waldron, T. Detchprohm, C. Wetzel, R. Karlicek, T. Chow. Monolithic integration of light-emitting diodes and power metal-oxide-semiconductor channel high-electron-mobility transistors for light-emitting power integrated circuits in GaN on sapphire substrate. Appl. Phys. Lett., 102, 192107(2013).
[24] Y.-J. Lee, Z.-P. Yang, P.-G. Chen, Y.-A. Hsieh, Y.-C. Yao, M.-H. Liao, M.-H. Lee, M.-T. Wang, J.-M. Hwang. Monolithic integration of GaN-based light-emitting diodes and metal-oxide-semiconductor field-effect transistors. Opt. Express, 22, A1589-A1595(2014).
[25] C. Liu, Y. Cai, Z. Liu, J. Ma, K. M. Lau. Metal-interconnection-free integration of InGaN/GaN light emitting diodes with AlGaN/GaN high electron mobility transistors. Appl. Phys. Lett., 106, 181110(2015).
[26] K. H. Li, Y. F. Cheung, W. Jin, W. Y. Fu, A. T. L. Lee, S. C. Tan, S. Y. Hui, H. W. Choi. InGaN RGB light-emitting diodes with monolithically integrated photodetectors for stabilizing color chromaticity. IEEE Trans. Ind. Electron., 67, 5154-5160(2019).
[27] L. Chen, Y. Wu, K. Li. Monolithic InGaN/GaN photonic chips for heart pulse monitoring. Opt. Lett., 45, 4992-4995(2020).
[28] R. Martin, P. Middleton, K. O’Donnell, W. Van der Stricht. Exciton localization and the Stokes’ shift in InGaN epilayers. Appl. Phys. Lett., 74, 263-265(1999).
[29] J. Yan, L. Wang, B. Jia, Z. Ye, H. Zhu, H. Choi, Y. Wang. Uniting GaN electronics and photonics on a single chip. J. Lightwave Technol., 39, 6269-6275(2021).
[30] M. Janecek, W. W. Moses. Optical reflectance measurements for commonly used reflectors. IEEE Trans. Nucl. Sci., 55, 2432-2437(2008).
[31] Y. C. Cai, J. Shen, C. W. Yang, Y. Wan, H. L. Tang, A. A. Aljarb, C. L. Chen, J. H. Fu, X. Wei, K. W. Huang, Y. Han, S. J. Jonas, X. C. Dong, V. Tung. Mixed-dimensional MXene-hydrogel heterostructures for electronic skin sensors with ultrabroad working range. Sci. Adv., 6, eabb5367(2020).
[32] Y. R. Kim, T. L. Phan, K. W. Cho, W. T. Kang, K. Kim, Y. H. Lee, W. J. Yu. Infrared proximity sensors based on photo-induced tunneling in van der Waals integration. Adv. Funct. Mater., 31, 2100966(2021).
[33] V. Kedambaimoole, N. Kumar, V. Shirhatti, S. Nuthalapati, S. Kumar, M. M. Nayak, P. Sen, D. Akinwande, K. Rajanna. Reduced graphene oxide tattoo as wearable proximity sensor. Adv. Electron. Mater., 7, 2001214(2021).
[34] H. Hasegawa, Y. Suzuki, A. G. Ming, K. Koyama, M. Ishikawa, M. Shimojo. Net-structure proximity sensor: high-speed and free-form sensor with analog computing circuit. IEEE/ASME Trans. Mechatron., 20, 3232-3241(2015).
[35] G. S. Lv, H. T. Wang, Y. H. Tong, L. Dong, X. L. Zhao, P. F. Zhao, Q. X. Tang, Y. C. Liu. Flexible, conformable organic semiconductor proximity sensor array for electronic skin. Adv. Mater. Interfaces, 7, 2000306(2020).
[36] K. H. Li, W. Y. Fu, Y. F. Cheung, K. K. Y. Wong, Y. Wang, K. M. Lau, H. W. Choi. Monolithically integrated InGaN/GaN light-emitting diodes, photodetectors, and waveguides on Si substrate. Optica, 5, 564-569(2018).
[37] E. Egusquiza, C. Valero, D. Valentin, A. Presas, C. G. Rodriguez. Condition monitoring of pump-turbines: new challenges. Measurement, 67, 151-163(2015).
Get Citation
Copy Citation Text
Xiaoshuai An, Hongying Yang, Yumeng Luo, Zhiqin Chu, Kwai Hei Li, "Ultrafast miniaturized GaN-based optoelectronic proximity sensor," Photonics Res. 10, 1964 (2022)
Category: Instrumentation and Measurements
Received: May. 5, 2022
Accepted: Jun. 28, 2022
Published Online: Jul. 27, 2022
The Author Email: Zhiqin Chu (zqchu@eee.hku.hk), Kwai Hei Li (khli@sustech.edu.cn)