Chinese Journal of Lasers, Volume. 48, Issue 1, 0113001(2021)
Fabrication of Flexible Surface-Enhanced Raman Spectroscopy Chip
[1] Kneipp K, Kneipp H, Itzkan I et al. Ultrasensitive chemical analysis by Raman spectroscopy[J]. Chemical Reviews, 99, 2957-2976(1999).
[2] Zrimsek A B, Chiang N, Mattei M et al. Single-molecule chemistry with surface-and tip-enhanced Raman spectroscopy[J]. Chemical Reviews, 117, 7583-7613(2017).
[3] Zhang Y, Zhao S J, Zheng J K et al. Surface-enhanced Raman spectroscopy (SERS) combined techniques for high-performance detection and characterization[J]. TrAC Trends in Analytical Chemistry, 90, 1-13(2017).
[5] Bruzas I, Lum W, Gorunmez Z et al. Advances in surface-enhanced Raman spectroscopy (SERS) substrates for lipid and protein characterization: sensing and beyond[J]. The Analyst, 143, 3990-4008(2018).
[6] Liu Y, Zhou H B, Hu Z W et al. Label and label-free based surface-enhanced Raman scattering for pathogen bacteria detection: a review[J]. Biosensors and Bioelectronics, 94, 131-140(2017).
[7] Xie X H, Pu H B, Sun D W. Recent advances in nanofabrication techniques for SERS substrates and their applications in food safety analysis[J]. Critical Reviews in Food Science and Nutrition, 58, 2800-2813(2018).
[9] Jiang Y F, Sun D W, Pu H B et al. Surface enhanced Raman spectroscopy (SERS): a novel reliable technique for rapid detection of common harmful chemical residues[J]. Trends in Food Science & Technology, 75, 10-22(2018).
[10] Tong Q, Wang W J, Fan Y N et al. Recent progressive preparations and applications of silver-based SERS substrates[J]. TrAC Trends in Analytical Chemistry, 106, 246-258(2018).
[11] Zhang Y, Wang G, Yang L et al. Recent advances in gold nanostructures based biosensing and bioimaging[J]. Coordination Chemistry Reviews, 370, 1-21(2018).
[12] Mosier-Boss P. Review of SERS substrates for chemical sensing[J]. Nanomaterials, 7, 142(2017).
[13] Hamajima S, Mitomo H, Tani T et al. Nanoscale uniformity in the active tuning of a plasmonic array by polymer gel volume change[J]. Nanoscale Advances, 1, 1731-1739(2019).
[14] Lee T, Jung S, Kwon S et al. Formation of interstitial hot-spots using the reduced gap-size between plasmonic microbeads pattern for surface-enhanced Raman scattering analysis[J]. Sensors, 19, 1046(2019).
[15] Sivashanmugan K, Lee H, Syu C H et al. Nanoplasmonic Au/Ag/Au nanorod arrays as SERS-active substrate for the detection of pesticides residue[J]. Journal of the Taiwan Institute of Chemical Engineers, 75, 287-291(2017).
[16] Wen S P, Su Y, Wu R et al. Plasmonic Au nanostar Raman probes coupling with highly ordered TiO2/Au nanotube arrays as the reliable SERS sensing platform for chronic myeloid leukemia drug evaluation[J]. Biosensors and Bioelectronics, 117, 260-266(2018).
[17] Lee P C, Meisel D. Adsorption and surface-enhanced Raman of dyes on silver and gold sols[J]. The Journal of Physical Chemistry, 86, 3391-3395(1982).
[19] Chen X J, Chen Q N, Wu D Z et al. Sonochemical and mechanical stirring synthesis of liquid metal nanograss structures for low-cost SERS substrates[J]. Journal of Raman Spectroscopy, 49, 1301-1310(2018).
[20] Huang W R, Yu C X, Lu Y R et al. Mass-production of flexible and transparent Te-Au nylon SERS substrate with excellent mechanical stability[J]. Nano Research, 12, 1483-1488(2019).
[21] Deegan R D, Bakajin O, Dupont T F et al. Capillary flow as the cause of ring stains from dried liquid drops[J]. Nature, 389, 827-829(1997).
[22] Hu H, Larson R G. Marangoni effect reverses coffee-ring depositions[J]. The Journal of Physical Chemistry B, 110, 7090-7094(2006).
[23] Usman M, Guo X, Wu Q S et al. Facile silicone oil-coated hydrophobic surface for surface enhanced Raman spectroscopy of antibiotics[J]. RSC Advances, 9, 14109-14115(2019).
[24] Gao Y K, Yang N, You T T et al. Superhydrophobic “wash free” 3D nanoneedle array for rapid, recyclable and sensitive SERS sensing in real environment[J]. Sensors and Actuators B: Chemical, 267, 129-135(2018).
[25] Yang S K, Dai X M, Stogin B B et al. Ultrasensitive surface-enhanced Raman scattering detection in common fluids[J]. PNAS, 113, 268-273(2016).
[26] Wang Q Z, Liu Y N, Bai Y W et al. Superhydrophobic SERS substrates based on silver dendrite-decorated filter paper for trace detection of nitenpyram[J]. Analytica Chimica Acta, 1049, 170-178(2019).
[27] Ji B, Zhang L, Li M et al. Suppression of coffee-ring effect via periodic oscillation of substrate for ultra-sensitive enrichment towards surface-enhanced Raman scattering[J]. Nanoscale, 11, 20534-20545(2019).
[28] Zhao X F, Yu J, Zhang C et al. Flexible and stretchable SERS substrate based on a pyramidal PMMA structure hybridized with graphene oxide assivated AgNPs[J]. Applied Surface Science, 455, 1171-1178(2018).
[29] Xiong Z Y, Lin M S, Lin H T et al. Facile synthesis of cellulose nanofiber nanocomposite as a SERS substrate for detection of thiram in juice[J]. Carbohydrate Polymers, 189, 79-86(2018).
[30] Zhou N N, Meng G W, Zhu C H et al. A silver-grafted sponge as an effective surface-enhanced Raman scattering substrate[J]. Sensors and Actuators B: Chemical, 258, 56-63(2018).
[31] Xu J T, Li X T, Wang Y X et al. Flexible and reusable cap-like thin Fe2O3 film for SERS applications[J]. Nano Research, 12, 381-388(2019).
[32] Zhang W Y, Man P H, Wang M H et al. Roles of graphene nanogap for the AgNFs electrodeposition on the woven Cu net as flexible substrate and its application in SERS[J]. Carbon, 133, 300-305(2018).
[33] Wu H X, Luo Y, Hou C J et al. Flexible bipyramid-AuNPs based SERS tape sensing strategy for detecting methyl parathion on vegetable and fruit surface[J]. Sensors and Actuators B-Chemical, 285, 123-128(2019).
[34] Zeng F Y, Mou T T, Zhang C C et al. Paper-based SERS analysis with smartphones as Raman spectral analyzers[J]. The Analyst, 144, 137-142(2019).
[35] Reokrungruang P, Chatnuntawech I, Dharakul T et al. A simple paper-based surface enhanced Raman scattering (SERS) platform and magnetic separation for cancer screening[J]. Sensors and Actuators B: Chemical, 285, 462-469(2019).
[36] Oliveira M J. Quaresma P, de Almeida M P, et al. Office paper decorated with silver nanostars-an alternative cost effective platform for trace analyte detection by SERS[J]. Scientific Reports, 7, 2480(2017).
[37] Xu Y Y, Man P H, Huo Y Y et al. Synthesis of the 3D AgNF/AgNP arrays for the paper-based surface enhancement Raman scattering application[J]. Sensors and Actuators B: Chemical, 265, 302-309(2018).
[38] Kim W, Lee S H, Kim J H et al. Paper-based surface-enhanced Raman spectroscopy for diagnosing prenatal diseases in women[J]. ACS Nano, 12, 7100-7108(2018).
[39] Stamplecoskie K G, Scaiano J C, Tiwari V S et al. Optimal size of silver nanoparticles for surface-enhanced Raman spectroscopy[J]. The Journal of Physical Chemistry C, 115, 1403-1409(2011).
[40] Araújo A, Caro C, Mendes M J et al. Highly efficient nanoplasmonic SERS on cardboard packaging substrates[J]. Nanotechnology, 25, 415202(2014).
[41] Kim D, Jeong S, Park B K et al. Direct writing of silver conductive patterns: improvement of film morphology and conductance by controlling solvent compositions[J]. Applied Physics Letters, 89, 264101(2006).
[42] Yang F, Chen L, Li D Y et al. Printer-assisted array flexible surface-enhanced Raman spectroscopy chip preparation for rapid and label-free detection of bacteria[J]. Journal of Raman Spectroscopy, 51, 932-940(2020).
[43] Zong C, Xu M, Xu L J et al. Surface-enhanced Raman spectroscopy for bioanalysis: reliability and challenges[J]. Chemical Reviews, 118, 4946-4980(2018).
Get Citation
Copy Citation Text
Feng Yang, Ping Wen, Zhiqiang Zhang, Danyang Li, Li Chen, Shunbo Li, Yi Xu. Fabrication of Flexible Surface-Enhanced Raman Spectroscopy Chip[J]. Chinese Journal of Lasers, 2021, 48(1): 0113001
Category: micro and nano optics
Received: Jul. 21, 2020
Accepted: Aug. 21, 2020
Published Online: Jan. 13, 2021
The Author Email: Chen Li (CL2009@cqu.edu.cn)